dynamical symmetries for nanostructures implicit symmetries in single-electron transport through real and artificial molecules

358 471 0
dynamical symmetries for nanostructures implicit symmetries in single-electron transport through real and artificial molecules

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Konstantin Kikoin Mikhail Kiselev Yshai Avishai Dynamical Symmetries for Nanostructures Implicit Symmetries in Single-Electron Transport Through Real and Artificial Molecules Ph.D Konstantin Kikoin School of Physics and Astronomy Tel Aviv University 69978 Tel Aviv Israel konstk@post.tau.ac.il Ph.D Mikhail Kiselev The Abdus Salam Intl Center for Theoretical Physics Strada Costiera 11 34151 Trieste Italy mkiselev@ictp.it Ph.D Yshai Avishai Ben Gurion University 84105 Beer Sheva Israel yshai@bgumail.bgu.ac.il This work is subject to copyright All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks The use of registered names, trademarks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use # 2012 Springer-Verlag/Wien SpringerWienNewYork is part of Springer Science+Business Media springer.at Typesetting: SPi Publisher Services, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12590339 Library of Congress Control Number: 2011943752 e-ISBN 978-3-211-99724-6 ISBN 978-3-211-99723-9 DOI 10.1007/978-3-211-99724-6 SpringerWienNewYork Dedicated to the memory of Yuval Ne’eman and John Hubbard, two great physicists whose ideas are the corner stones of the theories presented in this book Preface The main goal of this monograph is to demonstrate the relevance of dynamical symmetry and its breaking to the rapidly growing field of nanophysics in general, and nanoelectronics in particular It is intended to amalgamate seemingly highly abstract concepts of Group theory with the physics of recently fabricated nanoobjects such as single electron transistors In all these systems, dynamical symmetries are shown to be intimately related with many-body physics, and in particular, the ubiquitous Kondo effect and other hallmarks of quantum impurity problems Thereby, we expose yet another facet of the existing deep and profound relations between quantum field theory and condensed matter physics The concept of symmetry in quantum mechanics has had its golden age in the middle of the last century In that period, the beauty, elegance and efficiency of group theoretical physics has been exposed in numerous remarkable revelations, from classification of hadron multiplets, isospin in nuclear reactions, the orbital symmetry in Rydberg atoms, point-groups in crystallography, translational symmetry in solid state physics, and so on At the focus of all these studies stands the symmetry group of the underlying Hamiltonian Using the powerful formalism of group theory, the energy spectrum of the physical system possessing the pertinent symmetry could be extracted within an elegant and time saving formalism Exploiting the properties of discrete and infinitesimal rotation and translation operators, general statements about the basic properties of quantum mechanical systems could be formulated in a form of theorems (Wigner theorem, Bloch theorem, Goldstone theorem, Adler principle, etc) The intimate relation between group theory and quantum mechanics is therefore well established and has been exposed in numerous excellent handbooks A somewhat more subtle aspect featuring group theory and quantum mechanics emerged and was formulated later on, that is, the concept of dynamical symmetry The notion of dynamical symmetry group is distinct from that of the familiar symmetry group To understand this distinction in an heuristic way let us recall that all ˆ generators of the symmetry group of the Hamiltonian H encode certain integrals ˆ These operators induce all transformations of the motion, which commute with H which conserve the symmetry of the Hamiltonian, and may have non-diagonal maˆ trix elements only within a given irreducible representation space of H On the other vii viii Preface ˆ hand, dynamical symmetry of H is realized by transformations implementing transitions between states belonging to different irreducible representations of the symmetry group One may then say that the generators of dynamical symmetry group of a quantum mechanical system are in fact the generators of the energy spectrum or some part of it Special examples of dynamical symmetries in quantum mechanics emerge as hidden symmetries, where additional degeneracy exists due to an implicit symmetry of the interaction Another example is supersymmetry, where the group algebra includes both commutation and anticommutation relations The starting point in most of our analysis is a generalized Anderson Hamiltonian which, under certain conditions can be approximated by a generalized spin Hamiltonian encoding a myriad of exchange interactions between localized electrons in nano-objects (such as quantum states in complex quantum dots) and itinerant electrons in the reservoirs made in contact with the localized electrons These exchange interactions may be due to spin as well as to orbital degrees of freedom They lead to effective exchange Hamiltonians that display a rich pattern of dynamical symmetries Mathematically, these symmetries are exposed as the pertinent exchange Hamiltonian includes, in addition to the standard spin operators, new sets of vector operators which form the basis for the representation of irreducible tensor operators entering the effective Hamiltonian These operators induce transitions between different spin multiplets and generate dynamical symmetry groups (such as SU(n) and SO(n)) that are not exposed within the bare Anderson Hamiltonian Like in quantum field theory, the most dramatic aspects of dynamical symmetry in the present context is not its relation with the spectrum but, rather, the manner in which it is broken An indispensable tool for manipulating the pertinent mathematics required for identifying the relevant dynamical symmetry groups is the superalgebra of Hubbard operators, upon which we will heavily rely The role of dynamical symmetries and their manifestations will be reviewed and analyzed in several systems such as complex quantum dots (planar, vertical and self-assembled), molecular complexes adsorbed on metallic surfaces and attached to quantum wires, cold gases confined in magnetic traps It will be shown how these dynamical symmetries are activated by Coulomb and exchange interactions with itinerant electrons in the macroscopic Fermi or Bose reservoirs (metallic leads and substrates in various nanodevices) We will then develop the concept within numerous physical situations, including the Kondo cotunnelling in various environments The notion of dynamical symmetry is meaningful also for the systems out of equilibrium, in presence of electromagnetic field and stochastic noise and in timedependent problems like Landau –Zener effect Thus, the main goal of this book is to generalize the principles of dynamical symmetries formulated for the integrable systems to the many-body systems, for which only the low-energy part of the excitation spectrum is known Tel Aviv - Trieste - Beer Sheva, October 31, 2011 Konstantin Kikoin Mikhail Kiselev Yshai Avishai Acknowledgements We acknowledge fruitful discussions with our colleagues Boris Altshuler, Jan von Delft, Peter Fulde, Yuri Galperin, Yuval Gefen, Leonid Glazman, Vladimir Gritsev, David Khmelnitskii, Il’ya Krive, Tetiana Kuzmenko, Stefan Ludwig, Laurens W Molenkamp, Florina Onufrieva, Michael Pustilnik, Jean Richert, Robert Shekhter, Maarten Wegewijs ix 336 – in Kondo effect, 253–255, 260, 261, 263, 264, 266–268, 286 – related to dynamical symmetries, 259 Dicke model, 234 dynamical symmetries, 1, 49, 55 – definition, 5, 329, 330 – in 1D and 2D nanosystems, 332, 333 – in Kondo effect, 107, 108, 136, 330 – in Landau-Zener effect, 293, 294, 296–298 – in non-equilibrium systems, 4, 21, 104, 245, 248–255, 257, 331 – noise induced, 4, 261, 263, 264, 266–270, 272, 274, 275 dynamical symmetry breaking, – Anderson – Nambu mechanism, – Higgs – Anderson mechanism, – electroweak interaction, 31 dynamical symmetry groups, – definition, – point C2n group, 212, 216 – point C3v group, 82, 88, 180, 211 – point D2d group, 83, 85, 185 – SO(1,1) subgroup, 313 – SO(12) group, 89, 91, 183 – SO(2,1) group, 32, 34, 63, 104, 217, 233, 245 – SO(3) subgroup, 10–12, 19, 142, 183, 268–270, 272, 310 – SO(3,1) group, 9, 313, 314 – SO(4) group, 2, 9, 11, 12, 20, 21, 29, 40, 41, 50, 60, 63, 77, 79, 80, 88, 89, 91, 104, 125, 127–133, 142, 146, 149, 161, 173, 183, 222, 224, 249–255, 285, 287, 291, 292, 295, 311–313 – SO(4,1) group, 314 – SO(4,2) conformal group, 2, 13, 14, 41, 314 – SO(5) group, 20, 21, 29, 60, 78, 80, 87, 142–144, 239, 257, 261, 263, 264, 266–268 – SO(6) group, 19, 21, 60, 76, 126, 132 – SO(7) group, 21, 142–144 – SO(8) group, 21, 89, 139, 161, 177, 178, 239 – SO(9) group, 139 – SO(n) group, 3, 14, 15, 21, 23, 59, 91, 117, 160, 245, 325, 330 – SO(n,1) group, 2, 14 – SO(n,2) group, 14 – SO(p,n-p) group, 313, 314 – SU(10) group, 123 – SU(2) subgroup, 15, 17, 26, 34, 57, 64, 68, 75, 76, 85, 86, 108, 112, 113, 120, 121, 124, 127, 128, 131, 132, 138, 180, 216, Index 228, 229, 231, 276, 295, 309, 310, 312, 316–319 – SU(3) group, 2, 10, 23, 27, 29, 31, 42, 43, 59, 111, 112, 116, 145, 208, 259, 285, 299–301, 315, 316, 320, 322 – SU(4) group, 17, 22, 27, 56, 58, 65, 73–75, 84–86, 91, 110, 118, 120, 123, 137, 138, 147, 182, 183, 185, 187, 201, 208, 227–229, 231, 258, 261, 263, 264, 272, 274, 275, 285, 289, 294, 317–319, 322 – SU(5) group, 208 – SU(6) group, 65, 85, 86, 91, 123, 180, 208, 210, 214, 222 – SU(n) group, 3, 15, 23, 73, 108, 117, 119, 121, 175, 196, 208, 212, 245, 293, 315, 320, 322, 330 eightfold way, 2, 29, 31, 258 electron shuttling, 4, 104 Euler angles, evolution operator, 296, 297 exchange interaction, 17, 51, 59, 63 – double (Zener) exchange, 87 – Dzyaloshinskii – Moriya exchange, 203–205 – indirect exchange, 17, 28, 58, 59, 157, 171, 182, 193, 212, 220, 224–226, 235, 236, 250–253 – RKKY exchange, 99, 125, 126, 139 excitons in quantum dots, 18, 59, 61, 238–240 – charge transfer excitons, 18, 20, 28, 77–79, 87–89, 165, 177, 265 – exciton-electron complexes, 240–242 – in optical response, 239–244 – many-exciton states, 69, 243, 244 – singlet excitons, 59, 60, 69, 90, 139, 222, 257 – singlet-triplet excitons, 19, 20, 28, 59, 63, 77–79, 87–89, 98, 104, 125, 127, 128, 130–134, 139, 146, 148, 173, 177, 222, 257, 265, 268, 287 Fano effect, 149, 150, 207 – Fano – Cooper factor, 151, 208 – interplay with Kondo effect, 150–153, 159, 190, 191, 195 Floquet – Bloch theorem, 45, 47, 233, 292 Fock – Darwin model, 31, 33, 34, 61, 64, 135, 177 – energy levels, 32, 34, 39, 40, 61, 68 – two-band, 67, 69, 240, 241 – wave functions, 33 Friedel sum rule, 114, 134 frustration, 185, 187, 210 Index Gaussian distribution function, 270, 274, 275, 278, 279, 302–306 Gell-Mann matrices, 22 – of 3rd rank, 25, 29, 111, 116, 299–301, 315, 316, 320, 322 – of 4th rank, 22, 25, 26, 56, 110, 145, 317–319, 322 Glazman – Raikh rotation, 55, 74, 81, 84, 86, 164, 167 Green function, 118, 119, 150, 151, 159, 190, 207, 238, 242, 249, 250, 254, 255, 268–270, 272, 274, 275, 278, 279 – for nonequilibrium systems, 247 harmonic oscillator, 2, 32, 44, 49 hidden symmetry, 2, 12, 14, 41, 214 Huang – Rhys factor, 103, 220, 226, 229 Hubbard atom, 23, 27, 29, 31, 41, 43, 102, 227, 228, 319, 320 – energy levels, 24, 27, 42, 55, 56, 110, 265 – – time-dependent, 293, 299 Hubbard model, 7, 23, 44 – Hubbard chain, 136 Hubbard molecule, 72 – dimer, 72, 73 – – energy levels, 76–79 – – even occupation, 76–80 – – odd occupation, 73–75 Hubbard operators, 6, 7, 16, 17, 21, 24, 55, 75, 176, 178, 187, 214, 238, 241 – Bose-type, 7, 25, 42, 57, 116 – commutation relations, 6, 25, 26 – Fermi-type, 7, 25, 42, 55, 116 – relation to SO(n) group generators, 19, 21, 311, 325 – relation to SU(n) group generators, 17, 22, 25, 26, 56, 58, 110, 187, 258, 299, 311, 319, 320, 324, 328 Hubbard parabola, 53, 55, 56, 227, 228 Hund’s rules, 124, 200 hydrogen atom, 2, 3, 7, 10, 14, 20, 40, 49 – n-dimensional, 14, 41 hydrogen molecule, 18, 92 hyperspherical harmonics, integrable systems, 2, 4, 5, 15, 50, 68, 163 – Bethe ansatz, 114 irreducible representations, 5–7, 321 – for SU(3) group, 29, 30 irreducible tensor operators, 7, 9, 10, 22, 23, 26, 317 Keldysh contour, 277 Kolokolov representation, 297 337 Kondo effect, 28, 50, 65, 69, 108 – in molecular complexes, 199, 208, 209, 211–216 – – even occupation, 199, 200, 229, 231 – – for pair tunneling, 229, 231 – – in presence of TR precession, 205 – – odd occupation, 199–201, 210 – – phonon assisted, 218–220 – – phonon induced, 222–226 – in nonequilibrium systems, 245–247, 260, 261 – – even occupation, 249–255, 257 – in SET, 92 – – even occupation, 126–128, 130–135, 138–140, 142–145, 148, 149, 160, 169, 171–173, 175, 177, 178, 183, 185, 196, 236–239 – – odd occupation, 109–113, 115, 117–119, 121, 123, 124, 137, 138, 145–148, 156–158, 165–167, 169, 176, 180, 182–185, 187, 189, 196 – – photon assisted, 236 – – photon induced, 236–240 – interplay with Aharonov – Bohm effect, 189–193, 206 – magnetic field induced, 126–128, 130, 138, 145, 169, 171–173, 175, 180, 182, 183, 216, 225, 226, 287, 289 – multichannel, 162–167 – orbital, 90, 175, 177, 178, 201 – overscreened spin, 124, 162, 240 – spinons and holons, 116–118, 163 – three-channel, 153, 167, 181 – two-channel, 90, 132, 153, 167, 169, 171, 176–178, 188, 221 – – non-Fermi liquid regime, 154, 163–167, 169, 171–173, 175, 187, 189, 210 – – orbital anisotropy, 124, 125, 164–167 – two-site Kondo model, 124, 126, 139, 155 – underscreened spin, 124, 196, 240 Kugel – Khomskii Hamiltonian, 75, 84, 187, 210 Landau – Zener effect, 4, 99 – in n-level systems, 293, 294, 296–301, 307 – in presence of noise, 301–307 – in two-level systems, 293, 301–306 Landau levels, 39 Landauer formula, 151 Lang – Firsov canonical transformation, 102, 219, 227 Larmor (diamagnetic) shift, 63–65, 68, 69, 177, 185, 200 338 line-shape function, 103, 220, 226, 234–236 Luttinger liquid, 155 magnetic flux, 180–185, 189–193, 287, 289 molecular complex, 3–5, 91, 96–101, 197 – in single-electron transistors, 198 – in STM spectroscopy, 201, 206–211 – molecular grid, 98, 99, 199 – rare-earth metal organic complexes (REMOC), 96, 101 – transition metal organic complexes (TMOC), 96, 101, 212–216, 222–226 molecular excitons, 94, 101 molecular magnets, 44, 99, 211–216 molecule – as quantum dot, 92, 95, 108, 128, 132, 197, 198 – carbon peapod, 96 – fullerene, 92–94, 100, 132, 199 – – dimetallofullerene, 94 – – endofullerene, 94 – in break junction geometry, 91, 93, 96 – in STM geometry, 91 – metallocene, 94, 96, 97 – nanotube, 92, 94, 95, 100, 108, 128, 199, 255 multiplets, 1, 2, 9, 15–18, 20, 21, 23–25, 29, 42, 56, 60, 73, 93, 125, 156, 157, 165, 177, 180, 257 – hadron multiplets, 1, 29 – – isospin and hypercharge, 29, 31, 258 nanoelectromechanical single-electron tunneling transistor (NEM-SET), 105, 283, 284, 290 – shuttling in Kondo regime, 283, 291, 292 noise, 263 – in quantum dots, 264–268 – in TLS, 276–280 – in ultracold gases, 280 – Keldysh model, 269 – – scalar, 270, 272, 279, 280, 304–306 – – vector, 272, 274, 275, 277–280, 302–306 Onsager relations, 194 optical traps, 300, 330 orthogonality catastrophe, 107, 330 – shake-up effects, 239, 241, 243, 244 paramagnetic susceptibility, 247, 272, 275 path integral method, 277–279 Pauli matrices, 16, 17, 75, 309, 310 polaron shift, 220, 226, 227 Index projection operator, 6, 9, 50 pseudospin operator, 17, 26, 75, 84, 90, 175, 178, 182, 183, 187, 189, 201, 213, 272, 274, 275, 293, 299, 318, 319, 330 quantum box, 175 quantum criticality, 3, 173, 175 quantum dot, 3, 5, 91, 330 – complex quantum dots, 4, 5, 70, 71, 91 – – double quantum dots (DQD), 70–73, 75–80, 125, 137, 138, 147–149, 154, 160, 167, 169, 171–173, 175, 249–255, 286, 287, 295–298 – – Fulde molecule, 28, 29, 60, 72, 94 – – triple quantum dots (TQD), 70, 71, 80, 81, 83, 85–90, 139, 140, 142–146, 152, 153, 155–158, 160, 165–167, 177, 189–193, 195, 289 – geometry, 71, 136 – – Δ -shape, 71, 83, 185, 187, 189, 287, 289 – – ∇-shape, 71, 83, 185, 187, 188, 190 – – cross, 71, 81, 155–158 – – parallel, 71, 74, 81, 159, 160, 165–167, 177, 189 – – ring-shaped, 179 – – serial, 71, 74, 81, 137–140, 142–146 – – T-shape, 71, 74, 81, 96, 147–149, 152–155, 167, 169, 171–173, 175, 249–255, 261, 263, 264, 266–268, 286 – – triangular, 71, 82, 83, 179, 180, 182–185, 187, 189–195, 210, 261, 263, 264, 272 – – V-shape, 71, 83, 84 – lateral(planar), 51, 52, 72, 108, 153 – – level spacing, 51, 66, 169 – self-assembled, 65, 67, 69, 238, 240–244 – – level spacing, 67 – – wetting layer, 67, 69, 240–244 – vertical (disk-like), 61–65, 71, 160, 176, 185, 192 quantum wire, 155 quasienergy levels, 46, 47, 292 quasienergy states, 45, 46, 233, 245, 292 Rayleigh distribution function, 274, 275 renormalization group (RG), 110–113, 115, 146 – Anderson procedure, 113, 122, 140, 228, 229, 231, 266 – – for nonequilibrium systems, 246 – fixed point, 114, 124, 126, 163, 164, 166, 214 Index – flow trajectories, 113, 142, 157, 161, 164, 166, 171, 214 – Jefferson – Haldane procedure, 110, 112, 121, 140, 146, 149, 157, 160, 177, 191, 228, 266 – multistage renormalization, 110, 112, 116, 121, 125, 130–134, 137, 138, 144, 148, 149, 154, 158, 178, 180, 191, 222, 228, 229, 231, 266, 330 – numerical RG, 114, 115, 119, 134, 176, 187, 190, 192, 201, 209, 215 – scaling equations, 113, 114, 129, 130, 133, 134, 137, 146, 158, 161–164, 166, 171, 174, 182, 193, 214, 231, 252, 253 – scaling invariants, 113, 140 Riccati equation, 297, 300 rigid rotator, 2, 7–9, 14, 20 – n-dimensional, 14 rotation operators, 11, 311–313 Runge – Lenz vector, 2, 3, 10, 11, 14, 20, 40 scattering phase shift, 114, 134, 159, 163, 190, 244 Schră dinger equation, 2, 5–7, 10, 15, 16, 20, o 45–47, 301 Schrieffer – Wolff (SW) Hamiltonian, 58, 73, 75, 81, 83, 89, 93, 108, 148, 153, 156, 164, 166, 182, 187, 193, 220 – Coqblin – Schrieffer model, 120, 122 – Cornut – Coqblin model, 121, 122 – for negative U Anderson model, 228, 229 – in presence of dynamical symmetries, 61, 78, 84, 87, 88, 90, 91, 107, 128, 129, 133, 143, 144, 146, 158, 171, 178, 188, 222–226, 228, 229, 250, 266, 267, 287, 289, 291, 292 – in presence of TR precession, 202–205 – magnetic anisotropy, 171, 172, 208, 212–214, 229 – three-site exchange Hamiltonian, 185 – time-dependent, 219, 235, 236, 260, 266, 267, 287, 289, 291, 292 – two-site exchange Hamiltonian, 124, 125 selection rules, 2, 10, 209 single electron tunneling (SET), 3, 52, 54 – electron cotunneling, 57, 59, 73, 177 – – inelastic, 108, 109, 258 – – pair tunneling, 227–229, 231, 258 – – phonon assisted, 217, 218, 220, 222–226 – – photon assisted, 233–236, 260, 261 – in non-equilibrium systems, 236 – through molecules, 92, 197, 199 – – nanotubes, 95 – – phonon assisted, 92, 100, 102 339 spin filters and valves, 196 spin relaxation, 254, 255 spin-orbit interaction, 121, 123 spirality, 95, 96, 206, 255 strongly correlated electron systems (SCES), 7, 24, 26, 41, 54, 107 superalgebra, 6, 25, 35–37, 43 – Z(2) graded, 36, 37, 40 supersymmetry, 3, 14, 35–42 – in mesoscopic systems, 44 – supercharge operators, 35–38, 40–43 – supersymmetric Hamiltonian, 37, 43 – – energy spectrum, 38, 41 – – spinor representation, 38 Thomas – Rashba (TR) precession, 201 – TR Hamiltonian, 202–206 three-level systems, 23, 81, 316 – even occupation, 80, 145 – – energy levels, 80, 86, 88, 177, 183 – – wave functions, 86, 87 – odd occupation, 81, 157, 158 – – energy levels, 81, 82, 84, 85, 156, 165, 180 – – wave functions, 82, 146, 156, 165 transition matrix (T -matrix), 115, 119, 150, 221 trimers, 86, 210 tunneling conductance, 54, 164, 167, 169 – finite bias anomaly (FBA), 109, 201, 237, 245, 248–255, 257, 331 – unitarity limit, 115, 134, 137, 159, 163, 168, 190 – zero bias anomaly (ZBA), 108, 114, 115, 128, 130–132, 136, 152, 201, 225, 245, 287 – – in presence of magnetic field, 172, 173, 175, 180, 190–194 two-level systems (TLS), 15, 47, 90, 175, 276 – even occupation, 17, 28, 76, 138 – – energy levels, 18, 28, 298–301 – – wave functions, 18 – for Bose particles, 293, 298–301 – odd occupation, 15–17, 73, 137, 293, 305, 306 – – energy levels, 16 – – wave functions, 16 Ward identities, 271, 275 Wei – Norman method, 296, 297 Wigner theorem, Wigner-Eckart theorem, Zeeman effect, 39, 62, 68, 90, 99, 126, 138, 144, 169, 177, 179, 184, 200, 296 References 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Abrikosov A.A., Physics 2, (1965) Abrikosov A.A., Migdal A.B., J Low Temp Phys 3, 519 (1970) Affleck I., J Phys Soc Jpn 74, 59 (2005) Affleck I., Ludwig A.W.W., Phys Rev B 48, 7297 (1993) Affleck I., Marston B., Phys Rev B 37, 3774 (1988) Aharonov Y., Bohm D., Phys Rev 115, 485 (1959) Aleiner I.L., Altshuler B.L., Galperin Y.M., Shutenko T.A., Phys Rev Lett 86, 2629 (2001) Aleiner I.L., Controzzi D., Phys Rev B 66, 045107 (2002) Aleksandrov A.S., Bratkovsky A.M., Williams R.S., Phys Rev B 67, 075301 (2003) Allen L., Eberly J.H Optical Resonance and Two-Level Atoms (Dover, N.Y., 1987) Alliluev S.P., Sov Phys – JETP, 6,156 (1958) Amaha S., Hatano T., Kubo T., Tokura Y., Austing D.G., Tarucha S., Physica E 40, 1322 (2008) Amaha S., Hatano T., Kubo T., Teraoka S., Tokura Y., Tarucha S., Austing D.G., Appl Phys Lett 94, 092103 (2009) Andergassen S., Meden V., Schoeller H., Splettstoesser J., Wegewijs M R., Nanotechnology 21, 272001 (2010) Anders F.B., Logan D.E., Galpin M.R., Finkelstein G., Phys Rev Lett 100, 086809 (2008) Anderson P.W., Phys Rev 124, 41 (1961) Anderson P.W., Phys Rev Lett 17, 95 (1966) Anderson P.W., Phys Rev Lett 18, 1049 (1967) Anderson P.W., J Phys C: Solid State Phys 3, 2346 (1970) Anderson P.W., Phys Rev Lett 34, 953 (1975) Andrei N., Furuya F., Loewenstein J.H., Rev Mod Phys 55, 331 (1983) Andrei N., Jerez A., Phys Rev Lett 74, 4507 (1995) Anisimovas E Peeters F.M., Phys Rev B 65, 233302 (2002); 66, 075311 (2002) Aono T., Phys Rev B 76, 073304 (2007) Aono T., Eto M., Phys Rev B 63, 125327 (2001) Aono T., Golub A., Avishai Y., Phys Rev B 68, 045312 (2003) Appelbaum J., Phys Rev Lett 17, 91 (1966) Aristov D.N., Bră nger C., Assaad F.F., Kiselev M.N., Weichselbaum A., Capponi S., Alet F., u Phys Rev B 82, 174410 (2010) Aristov D.N., Kiselev M.N., Kikoin K., Phys Rev B, 75 224405 (2007) Arovas D.P., Auerbach A., Phys Rev B 38, 316 (1988) Avishai Y., Golub A., Zaikin A.D., Phys Rev B 63, 134515 (2001) Avishai Y., Kikoin K., Tunneling through Quantum Dots with Discrete Symmetries in ”Encyclopedia of Complexity” (Springer Verlag, Berlin 2009) Babi´ B., Kontos T., Schă nenberger C., Phys Rev B 70, 235419 (2004) c o 341 342 References 34 35 36 37 38 39 40 41 42 43 Balseiro C.A., Cornaglia P.S., Grempel D.R., Phys Rev B 74, 235409 (2006) Barbara B., Gunther L., Physics World, 12, 35 (1999) Bargmann V., Zs fă r Physik, 99, 576 (1936) u Barnes S.E., J Phys F.: Metal Phys 6, 1375 (1976); it ibid, 7, 2637 (1977) Bartosch L., Kopietz P., Eur Phys Journ B 17, 555 (2000) Barut A.O., Phys Rev 135, B839 (1964) Barut A.O., Phys Rev 139, B1433 (1965) Barut A.O., Kleinert H., Phys Rev bf 156,1541 (1967) Bayer M., Stern O., Hawrylak P., Fafard S., Forchel A., Nature 405, 923 (2000) Bimberg D., Grundmann M., Ledentsov N (eds), Quantum Dot Heterostructures (Wiley, N.Y., 1998) Bockrath M., Cobden D.H., Lu J., Rinzler A.G., Smalley R.E., Balents L, McEuen P.L Nature, 397, 598 (1999) Bogani L., Wernsdorfer W., Nature Materials, bf 7, 179 (2008) Bă hm A., Nuovo Cimento 43A, 665 (1966); Phys Rev 145, 1212 (1966) o Booth C.H., Walter M.D., Daniel M., Lukens W.W., Andersen R.A., Phys Rev Lett 95, 267202 (2005) Borda L., Zarand G., Hofstetter W., Halperin B.I., von Delft J., Phys Rev Lett 90, 026602 (2003) Braig S., Flensberg K., Phys Rev B 68, 205324 (2003) Bruder C., Schoeller H., Phys Rev Lett 72, 1076 (1994) Bră nger C., Assaad F.F., Capponi S., Alet F., Aristov D.N., Kiselev M.N., Phys Rev Lett u 100, 017202 (2008) Bulka B.R Stefanski P., Phys Rev Lett 86, 5128 (2001) Bychkov Yu.A., Rashba E.I., J Phys C: Solid State Phys 17, 6039 (1984) Caldeira A.O., Legget A.J., Ann Phys 149, 374 (1983) Cheinet P., Trotzky S., Feld M., Schnorrberger U., Moreno-Cardoner M., Fă lling S., Bloch I., o Phys Rev Lett 101, 090404 (2008) Chen C.J., Introduction to Scanning Tunneling Microscopy (Springer, Berin, 1996) Choi M.-S., Int J Nanotechnology, 3, 216 (2006) Chudnovsky E.M., Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge University Press, Cambridge, 1998) Clerk A., Ambegaokar V., Hershfield S., Phys Rev B 61, 3555 (2000) Coleman P., Phys Rev B 29, 3035 (1984) Coleman P., P´ pin C., Hopkinson J., Phys Rev B 63, 140411 (2001) e Coqblin B., Schrieffer J.R., Phys Rev 185, 847 (1969) Cornaglia P.C., Grempel D.R., Phys Rev B 71, 245326 (2005) Cornaglia, P.C Grempel D.R., Ness H., Phys Rev B 71, 075320 (2005) Cornut B., Coqblin B., Phys Rev B 5, 4541 (1972) Costi T., Hewson A.C., J Phys.: Cond Mat 6, 2519 (1994) Cox D.L., Zawadowski A., Adv Phys 47, 943 (1998) Craig N.J., Taylor J.M., Lester E.A., Marcus C.M., Hanson M.P., Gossard A.C., Science 304, 565 (2004) Cronenwett S.M., Oosterkamp T.H., Kouwenhoven L.P., Science, 281, 540 (1998) Cuniberti G., Fagas G., Richter K (eds.), Molecular electronics, Lecture Notes in Physics, vol 680 (Springer, Berlin 2005) Dalgarno P.A., Ediger M., Gerardot B.D., Smith J.M., Seidl S., Kroner M., Karrai K., Petroff P.M., Govorov A.O., Warburton R.J., Phys Rev Lett 100, 176801 (2008) Darwin C.G., Proc Cambridge Phil Soc 27, 86 (1931) Dattoli G., Gallardo J., A Torri, J Math Phys 27, 772 (1986) De Franceschi S., Kouwenhoven L.P., Schă nenberger C., Wernsdorfer W., Nature Nanotecho nology 5, 703 (2010) Delgado F., Shim Y.-P., Korkusinski M., Hawrylak P., Phys Rev B 76, 115332 (2007) Del Nero J., de Souza F.M., Capaz R.B., J Comput Theor Nanoscience 7, (2010) Dicke R.H., Phys Rev 93, 99 (1954) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 References 343 78 Djukich D., Thygesen K.S., Untiedt C., Smit R.H.M., Jakobsen K.W., Ruitenbeek J.M., Phys Rev B 71, 161402 (2005) 79 Dolg M., Fulde P., Kă chle W., Neumann C.-S., Stoll H., J Chem Phys 94, 3011 (1991) u 80 Dong S.-H., Factorization Method in Quantum Mechanics (Springer 2007) 81 Dothan Y., Gell-Mann M., Ne’eman Y., Phys Lett 17, 148 (1965) 82 Dreiser J., Waldmann O., Dobe C., Carver G., Ochsenbein S T., Sieber A., Gă del H U., van u Duijn J., Taylor J., Podlesnyak A., Phys Rev B 81, 024408 (2010) 83 Dresselhaus M S., Dresselhaus G., Avouris P (eds.) Carbon Nanotubes: Synthesis Structure, Properties, and Application (Springer, 2001) 84 Duan L., Europhys Lett 67, 721 (2004) 85 Dyakonov M.I., Perel V.I., Sov Phys – JETP Lett 13, 467 (1971) 86 Dzyubenko A.B., Lozovik Yu.E., J Phys A: Math Gen 24, 415 (1991) 87 Edwards S.F., Phil Mag 3, 33, 1020 (1958) 88 Efetov K., Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge, 1997) 89 Efros A.L., Sov Phys – JETP 32, 479 (1971) 90 Ehrenberg W., Siday R.E., Proc Phys Soc B 62, (1949) 91 Eliasen A., Paaske J., Flensberg K., Smerat S., Leijnse M., Wegewijs M.R., Jørgensen H.I., Monthioux M., Nyg˚ rd J.,Phys Rev B 81, 155431 (2010) a 92 Elliot J.P., Dauber P.G, Symmetry in Physics (Macmillan, London 1979) 93 Elste F., Timm C., Phys Rev B 71, 155403 (2005) 94 Emary C., Phys Rev B 76, 245319 (2007) 95 Englefield M.J., Group Theory and the Coulomb Problem (Wiley, New York 1972) 96 Entin-Wohlman O., Aharoni A., Meir Y., Phys Rev B 71, 035333 (2005) 97 Erbe A., Weiss C., Zwerger W., Blick R.H., Phys Rev Lett 87, 096106 (2001) 98 Essler F.H.L., J Low Temp Phys., 99, 415 (1995) 99 Eto M., J Phys Soc Jpn., 74, 95 (2005) 100 Eto M., Nazarov Yu., Phys Rev Lett 85, 1306 (2000), Phys Rev B 64, 085322 (2001) 101 Fahri E., Jackiw R (eds.), Dynamical Gauge Symmetry Breaking (World Scientific, Singapore 1982) 102 Fano U., Phys Rev 124, 1866 (1961) 103 Fazio R., Raimondi R., Phys Rev Lett 80, 2913 (1998) 104 Fendley P., Lesage F., Saleur H., J Statist Phys 85, 211 (1996) 105 Ferrero M., De Leo L., Lecheminant P., Fabrizio M., J Phys.: Cond Mat 19, 433201 (2007) 106 Fetter A.L., Walecka J.D., Quantum Theory of Many-particle Systems (McGraw-Hill, New York 1971) 107 Findeis F., Baier M., Zrenner A., Bichler M., Abstreiter G., Hohenester U., Molinari E., Phys Rev B 63, 121309 (2001) 108 Finley J.J., Ashmore A.D., Lemaˆtre A., Mowbray D.J., Skolnick M.S., Itskevich I.E., ı Maksym P.A., Hopkinson M., Krauss T.F., Phys Rev B 63, 073307 (2001) 109 Florens S., Fritz L., Vojta M., Phys Rev Lett 96, 036601 (2006) 110 Fock V.A., Zs fă r Physik 47, 446 (1928) u 111 Fock V.A., Zs fă r Physik, 98, 145 (1935) u 112 Foletti S., Bluhm H., Mahalu D., Umansky V., Yacoby A., Nature Physics 5, 903 (2009) 113 Fowler M., Zawadowski A., Solid State Commun 9, 471 (1971) 114 Frahm H., Zvyagin A., J Phys.: Cond Mat 9, 9939 (1997) 115 Fuhrer A., Lă scher S., Ihn, T Heinzel T., Ensslin K., Wegscheider W., Bichler M., Nature u 413, 822 (2001) 116 Fujii T., Kawakami N., Phys Rev B 63, 064414 (2001) 117 Fujisawa T., Austing D.G., Tokura Y., Hirayama Y., Tarucha S., Nature, 419, 278 (2002) 118 Fulde P., Electron Correlations in Molecules and Solids, 2nd ed (Springer-Verlag, Berlin, Heidelberg, 1973) 119 Fulde P., Keller J., Zwicknagl G.: in Solid State Physics, Vol 41, ed by H Ehrenreich and D Turnbull (Academic Press, San Diego 1988) p.1 120 Fursa D.V., Yudin G.L., Phys Rev A 44, 7414 (1991) 344 References 121 122 123 124 125 126 127 128 129 130 131 Galperin M., Ratner M.A., Nitzan A., J Phys.: Cond Mat 19, 103201 (2007) Gan J., J Phys.: Cond Mat., 3, 3537 (1991) Garg A., Europhys Lett 22, 205 (1993) Garg A., Phys Rev B 51, 15161 (1995) Gatteschi D., Sessoli R., Angew Chem Int Ed 42, 268 (2003) Gell-Mann M., Physics Letters 8, 214 (1964) Gell-Mann M., Ne’eman Y., The Eightfold Way (Westview Press 1964) Gendenshtein L.E., Krive I.V., Sov Phys – Uspekhi, 28, 645 (1985) Georges A., Meir Y., Phys Rev Lett 82, 3508 (1999) Georgi H., Lie Algebras in Particle Physics (Benjamin/Cummings, Reading, 1982) Getty S.A., Engtrakul C., Wang L., Liu R., Ke S.-H., Baranger H.U., Yang W., Fuhrer M.S., Sita L.R., Phys Rev B 71, 241401 (2005) Gilmore R., Lie Groups, Physics, and Geometry (Cambridge University Press, Cambridge 2008) Giuliano D., Jouault B., Tagliacozzo A., Phys Rev 63, 125318 (2000); Giuliano D., Tagliacozzo A., Phys Rev Lett 84, 4677 (2000); Giuliano D., Jouault B., Tagliacozzo A., Europhys Lett 58, 401 (2002) Glazman L.I., Raikh M.E., JETP Lett 47, 452 (1988) Glazman L.I., Shekhter R.I., Sov Phys JETP 67, 163 (1988) Glazman L.I., Shekhter R.I., J Phys.: Condens Mat 1, 5811 (1989) Golden J.M., Halperin B.I., Phys Rev B 53, 3893 (1996) Goldhaber-Gordon D., Shtrickman H., Mahalu D., Abush-Magder D., Meirav Y., Kastner M.A., Nature 391, 156 (1998) Goldin Y., Avishai Y., Phys Rev Lett 81, 5394 (1998); Phys Rev B 61, 16750 (1999) Golfand Yu.A., Likhtman E.P., JETP Letters 13, 323 (1971) Gonzalez G., Leuenberger M.N., Mucciolo E R., Phys Rev B 78, 054445 (2008) Gorelik L.Y., Isacsson A., Voinova M.V., Kasemo B., Shekhter R.I., Jonson M., Phys Rev Lett 80, 4526 (1998) Gă res J., Goldhaber-Gordon D., Heemeyer S., Kastner M.A, Shtrikman H., Mahalu D., o Meirav U., Phys Rev B 62, 2188 (2000) Goshen S., Lipkin H.J., Annals Phys 301, 310 (1959) Govorov A.O., Karrai K., Warburton R.J., Phys Rev B 67, 241307 (2003) Govorov A.O., Warburton R.J., Karrai K., Schulhauser C., in Trends in Quantum Dots Research (Ed P.A Ling, Nova Science Publishers, 2005), pp 125-140 Haldane F.D.M., Phys Rev Lett 40, 416 (1978) Haldane F.D.M., Ph D Thesis, Cambridge University, Cambridge 1978 Haldane F.D.M., Anderson P.W., Phys Rev B 13, 2553 (1976) Hamermesh M., Group Theory and its Application to Physical Problems (Dover Publications, New York 1989) Hawrylak P., Phys Rev Lett 71, 3347 (1993) Hawrylak P., Phys Rev B 60, 5597 (1999) Heath J.R., Ann Review Mat Res 39, (2009) Heersche H B., de Groot Z., Folk J A., van der Zant H.S.J., Romeike C., Wegewijs M.R., Zobbi L., Barreca D., Tondello E., Cornia A., Phys Rev Lett 96, 206801 (2006) Helmes R.W., Sindel M., Borda L., van Delft J., Phys Rev B 72, 125301 (2005) Herring C., in Magnetism, v IV, pp (Eds Rado G.T, Suhl H., Academic Press, New York, London 1966) Hewson A., The Kondo Problem to Heavy Fermions, 2nd Edition (Cambridge University Press, Cambridge 1997) Hewson A.C., Newns D.M., J Phys C: Solid State Phys 13, 4477 (1980) Hioe F.T., Phys Rev A 28, 879 (1983) Hioe F.T., Phys Rev A 32, 2824 (1985) Hirjibehedin C.F., Lin C.-Y, Otte A.F., Ternes M., Lutz C.P., Jones B.A., Heinrich A.J., Science 317, 1199 (2007) 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 References 345 163 Hofmann F., Heinzel T., Waram D.A., Kotthaus J.P., G Bă m, Klein W., Tră nkle G.,Weimann o a G., Phys Rev B 51, 13872 (1995) 164 Hofstetter W., Kă nig J., Schă ller D., Phys Rev Lett 87, 156803 (2001) o o 165 Hofstetter W., Schă ller H., Phys Rev Lett 88, 016803 (2002) o 166 Hofstetter W., Zarand G., Phys Rev B 69, 235301 (2004) 167 Hopkinson J., Coleman P., Phys Rev B 67, 085110 (2003) 168 Huang F.Q., Tang A.C., Chem Phys Lett 248, 361 (1996) 169 Hubbard J., Proc Roy Soc A 276, 238 (1963) 170 Hubbard J., Proc Roy Soc A 277, 237 (1964) 171 Hubbard J., Proc Roy Soc A 281, 401 (1964) 172 Hă ttel A.K., Meerwaldt H.B., SteeleG.A., Poot M., Witkamp B., Kouwenhoven L.P., van der u Zant H.S.J., Physica Status Soldi (b), 247 (2010) 173 Hwa R.C., Nuyts J., Phys Rev 145, 1188 (1966) 174 Imamura H., Bruno P., Utsumi Y., Phys Rev B 69, 121303 (2004) 175 Ingersent K., Ludwig A.W.W., Affleck J., Phys Rev Lett 95, 257204 (2005) 176 Inn T., Sigrist M., Ensslin K., Wegscheider W., Reinwald M., New J Phys 9, 111 (2007) 177 Ithier G., Phys Rev B 72, 703 (2005) 178 Ivanov T., Europhys Lett 40, 183 (1997) 179 Izumida W., Sakai O., Shimizu Y., J Phys Soc Jpn 66, 717 (1997) 180 Izumida W., Sakai O., Shimizu Y., J Phys Soc Jpn, 67, 2444 (1998) 181 Izyumov Yu A., Skryabin Yu N., Statistical Mechanics of Magnetically Ordered Systems (N.Y.: Plenum, 1988) 182 Jamneala T., Madhavan V., Crommie M.F., Phys Rev Lett 87, 256804 (2001) 183 Jarillo-Herrero P., Kong J., van der Zant H.S.J., Dekker C., Kouwenhoven L.P., De Franceschi S., Nature, 434, 484 (2005) 184 Jayaprakash C., Krishna-murthi H.R., Wilkins J.W., Phys Rev Lett 47, 737 (1981) 185 Jefferson J.H., J Phys C: Solid State Phys 10, 3589 (1977) 186 Jones B.A Varma C.M., Phys Rev Lett 58, 843 (1987) 187 Jones B.A., Varma C.M., Phys Rev B 40, 324 (1989) 188 Johnson M.H., Lippmann B.A., Phys Rev., 76, 828 (1949) 189 Jouault B., Santoro G., Tagliacozzo A., Phys Rev B 61, 10243 (2000) 190 Kagan Yu., Kikoin K.A., Prokof’ev N.V., Physica B 182, 201 (1992) 191 Kagan Yu.M., Prokof’ev N.V., Sov Phys JETP 63, 1276 (1986); 69, 836 (1989) 192 Kaminski A., Nazarov Yu.V., Glazman L.I., Phys Rev Lett 83, 384 (1999); Phys Rev B 62, 8154 (2000) 193 Kang K., Phys Rev B 58, 9641 (1998) 194 Kang K., Cho S.Y., Kim J.-J., Shin S.-C., Phys Rev B 63, 113304 (2001) 195 Kashcheyevs V., Schiller A., Aharony A., Entin-Wohlman O., Phys Rev B 75, 115313 (2007) 196 Kastner M.A., Artificial atoms, Physics Today 46, 24 (1993) 197 Kawakami N., Okiji A., Phys Rev B 42, 2383 (1990) 198 Kayanuma Y., J Phys Soc Jpn 53, 108 (1984); 54, 2037 (1985) 199 Keldysh L.V., Sov Phys – JETP 20, 1018 (1965) 200 Keldysh L.V., Semiconductors in strong electric field, D Sci Thesis, Lebedev Physics Institute, Moscow, 1965 201 Khachidze T.T., Khelashvili A.A., Dynamical Symmetry of the Kepler-Coulomb Problem in Classical and Quantum Mechanics: Non-Relativistic and Relativistic (Nova Science Publishers, New York 2009) 202 Kikoin K., Avishai Y., Phys Rev B 62, 4647 (2000) 203 Kikoin K., Avishai Y., Phys Rev Lett 86, 2090 (2001); Phys Rev B 65, 115329 (2002) 204 Kikoin K., Avishai Y., Kondo physics in artificial molecules in ”Physics of Zero- and OneDimensional Nanoscopic Systems”, Springer Series in Solid State Sciences v 156, pp.45-75 (Eds Karmakar S.N, Maiti S.K., Chowdhury J., Springer Verlag, Berlin 2007) 205 Kikoin K., Avishai Y., Kiselev M.N., in ”Molecular Nanowires and other Quantum Objects” (eds Alexandrov A.S, Williams R.S.), NATO Sci Series II, vol 148 p 177-189 (2004) 346 References 206 Kikoin K., Avishai Y., Kiselev M.N., Dynamical symmetries in nanophysics, in ”Nanophysics, Nanoclusters and Nanodevices,” (Nova Science Publishers, New York 2006) pp 39-86 207 Kikoin K., Kiselev M.N., J Phys.: Conf Series 92, 012033 (2007) 208 Kikoin K., Kiselev M.N., Wegewijs M.R., Phys Rev Lett 96, 176801 (2006) 209 Kikoin K., Oreg Y., Phys Rev B 76, 085324 (2007) 210 Kikoin K., Pustilnik M., Avishai Y Physica B 259-261, 217 (1999) 211 Kim T.-S., Hershfield S., Phys Rev B 63, 245326 (2001) 212 Kirchberg A., Lă nge D., Pisani P., Wipf A., Annals Phys 303, 359 (2003) a 213 Kirchner S., Si Q., Phys Rev Lett 100, 026403 (2008) 214 Kiselev M.N., Int J Mod Phys B 20, 381 (2006) 215 Kiselev M.N., Aristov D.N., Kikoin K., Phys Rev B 71, 092404 (2005) 216 Kiselev M.N., Kikoin K.A., JETP Letters 89, 133 (2009) 217 Kiselev M.N., Kikoin K., Avishai Y., Richert J., Phys Rev B 74, 115306 (2006) 218 Kiselev M.N., Kikoin K., Molenkamp L.W., JETP Letters 77, 366 (2003); Phys Rev B 68, 155323 (2003) 219 Kiselev M.N., Kikoin K., Richert J., Phys Rev B 81, 115330 (2010) 220 Kiselev M.N., Kikoin K., Shekhter R.I., Vinokur V.M., Phys Rev B 74, 233403 (2006) 221 Kleemans N.A.J., van Bree J., Govorov A.O., KeizerJ.G., Hamhuis G.J., Nă tzel R., Silov o A.Yu., Koenraad P.M., Nature Physics, 6, 534 (2010) 222 Klimek C., Chen G., Datta S., Phys Rev B 50, 2316 (1994) 223 Kobayashi K., Nagase S., Structural and Electronic Properties of Endohedral Metallofullerenes; Theory and Experiment in ”Endofullerenes A New Family of Carbon Clusters”, eds Akasaka T., Nagase S (Kluwer, Dordrecht 2002), Chapt 4, pp 99-120 224 Kogan A , Granger G., Kastner M.A., Goldhaber-Gordon D., Phys Rev B 67, 113309 (2003) 225 Koch J., von Oppen F., Phys Rev B 72, 113308 (2005) 226 Koch J., von Oppen F., Andreev A.V., Phys Rev B 74, 205438 (2006) 227 Koch J., Raikh M.E., von Oppen F., Phys Rev Lett 96, 056803 (2006) 228 Koch J., Sela E., Oreg Y., von Oppen F., Phys Rev B 75, 195402 (2007) 229 Kă nig D.R., Weig E.M., Kotthaus J.P., Nature Nanotechnology 3, 482 (2008) o 230 Kă nig J., Martinek J., Barna J., Schă n G., in CFN Lectures on Functional Nanostructures o s o (Springer, Berlin, (2005), pp 145-164 231 Kohler S., Lehmann J., Hă nggi P., Phys Rep 406, 379 (2005) a 232 Kolokolov I.V., Ann Phys (N.Y.) 202, 165 (1990); M Chertkov and I Kolokolov, Phys Rev B 51, 3974 (1994); Sov Phys – JETP 79, 1063 (1994) 233 Kondo J., Progr Theor Phys 32, 37 (1964) 234 Kondo J., Physica 84B, 40, 207 (1976) 235 Konik R.M., Phys Rev Lett 99, 076602 (2007) 236 Kosteleck´ V.A., Nieto M.M., Phys Rev Lett 53, 2285 (1984); Phys Rev A 32, 2627 y (1985) 237 Kotliar G., Ruckenstein A.E., Phys Rev Lett 57, 1362 (1986) 238 Kouwenhoven L.P., Austing D.G., Tarucha S., Rep Progr Phys., 64, 701 (2001) 239 Krishna-murthy H.R., Wilkins J.W., Wilson K.G., Phys Rev B 21, 1003,1044 (1980) 240 Krive I.V., Shekhter R.I., Jonson M., Low Temp Phys 32, 887 (2006) 241 Kuchinskii E.Z., Sadovskii M.V., JETP 94, 654 (2002) 242 Kugel K.I Khomskii D.I., Sov Phys – Uspekhi, 25, 231 (1982) 243 Kulik I.O., Shekhter R.I, Sov Phys – JETP, 41, 308 (1975) 244 Kuzmenko T., Kikoin K., Avishai Y., Europhys Lett 64, 218 (2003) 245 Kuzmenko T., Kikoin K., Avishai Y., Phys Rev Lett 89, 156602 (2002), Phys Rev B 69, 195109 (2004) 246 Kuzmenko T., Kikoin K., Avishai Y., Phys Rev Lett 96, 046601 (2006) 247 Kuzmenko T., Kikoin K., Avishai Y., Phys Rev B 69, 195109 (2006) 248 Kuzmenko T., Kikoin K., Avishai Y., Phys Rev B 73, 235310 (2006) 249 Landau L.D., Physik Z Sowjetunion 2, 46 (1932) References 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 347 Lang I.G., Firsov Yu.A., Sov Phys JETP 16, 1301 (1963) Langreth D.C., Phys Rev 150, 516 (1966) Lazarovits B., Simon P., Zarand G., Szunyogh L., Phys Rev Lett 95, 077202 (2005) Lebanon E., Schiller A., Phys Rev B 64, 245338 (2001) Lebanon E., Schiller A., Anders F.B., Phys Rev B 68, 041311 (2003) Leclair A., Lesage F., Lukyanov S., Saleur H., Phys.Lett A235, 203 (1997) Leijnse M., Wegewijs M R., Hettler M H., Phys Rev Lett 103, 156803 (2009) Leuenberger M.N., Mucciolo E.R., Phys Rev Lett 97, 126601 (2006) Levy Yeyati A., Cuevas J.C., Martin-Rodero A., Phys Rev Lett 95, 056804 (2005) Li M.-R., Le Hur K., Hofstatter W., Phys Rev Lett 95, 086404 (2005) Liang W., Bockrath M., Park H., Phys Rev Lett 88, 126801 (2002) Liang W., Shores M.P., Bockrath M., Long J.R., Park H., Nature 417, 725 (2002) Likharev K., IBM J Res Dev., 32, 1554 (1988) Liljeroth P., Swart I., Paavilainen S., Repp J., Meyer G., Nano Lett 10, 2475 (2010) Livermore C., Crouch C.H., Westervelt R.M., Campman K.L, Gossard A.C., Science 274, 1382 (1996) Loss D., DiVincenzo D.P., Phys Rev A 57, 120 (1998) Lă H.-F., Guo Y., Appl Phys Lett 91, 092128 (2007) u Maekawa S., Shinjo T., Spin Dependent Transport in Mangetic Nanostructures (Taylor & Francis, 2002) Mahan G.D., Phys Rev 153, 882 (1967) Mahan G.D, Phys Rev 163, 612 (1967) Majorana E., Nuovo Cimento 9, 43 (1932) Majorana E., Nuovo Cimento 14, 171 (1937) Makarovski A., Liu J., Finkelstein G., Phys Rev Lett 99, 066801 (2007); Makarovski A., Zhukov A., Liu J., Finkelstein G., Phys Rev B 75, R241407 (2007) Maksym P.A., Chakraborty T., Phys Rev Lett 65, 108 (1990) Malkin I.A., Man’ko V.I., JETP Letters 2, 146 (1965); Soviet Journal of Nuclear Physics 3, 267 (1966) Malkin I.A., Man’ko V.I., Dynamical Symmetries and Coherent States of Quantum Systems (Nauka, Moscow 1979), in Russian Maranzana F.E., Phys Rev Lett 25, 239 (1970) Mathur M., Raychowdhury I., Anishetty R., J Math Phys 51, 093504 (2010) Mattis D., The Theory of Magnetism (Springer, Berlin, 1988) Matveev K.A., Phys Rev B 51, 1743 (1995) Meden V., Marquardt F., Phys Rev Lett 96, 146801 (2006) Meir Y., Wingreen N.S., Phys Rev Lett 68, 2512 (1992) Meir Y., Wingreen N.S., Phys Rev B 50, 4947 (1994) Minot E., Yaish Y., Sazonova V., McEuen P.L., Nature 428, 536 (2004) Mitchell A.K., Jarrold T.F., Logan D.E., Phys Rev B 79, 085124 (2009) Mitchell A.K Logan D.E., Phys Rev B 81, 075126 (2010) Mitra A., Aleiner I., Millis A.J., Phys Rev B 69, 245302 (2004) Molenkamp L.W., Flensberg K., Kemerlink M., Phys Rev Lett 75, 4282 (1995) Moriya T., in Magnetism, eds Rado T., Suhl H (Academic Press, 1963), v.1 p 86 Mukunda N., O’Raifeartaigh L., and Sudarshan E.C.G., Phys Rev Lett 15, 1041 (1965) Murakami S., Nagaosa N., Zhang S.-C., Science 301, 1348 (2003) Naimark M.A., Linear Representations of the Lorentz Group (Pergamon Press 1964) Nakamura A., Kawakami N., Okiji A., J Phys Soc Jpn 56, 3667 (1987) Nakamura H , Nonadiabatic transitions (World Scientific, Singapore, 2002) Nambu Y., Progr Theor Phys., Suppl 36-37, 368 (1966) Natelson D., Handbook of Organic Electronics and Photonics (American Scientific Publishers, Valencia, CA 2006) Ne’eman Y., Nucl Phys 26, 222 (1961) Ng T.K., Lee P.A., Phys Rev Lett 61, 1768 (1988) Nikishov A.I Ritus V.I., Sov Phys – JETP 19, 1041 (1964) 348 References 299 300 301 302 303 304 305 Nitzan A., Ratner M.A., Science 300, 5624 (2003) Nozi` res P., J Low Temp Phys 17, 31 (1974) e Nozi` res P., Annales de Physique 10, 19 (1985) e Nozi` res P., Blandin A., J Physique 41, 193 (1980) e Nozi` res P., De Dominicis C.T., Phys Rev 178, 1097 (1969) e Nozi` res P., Gavoret J., Roulet B., Phys Rev 178, 1084 (1969) e Nun˜ z Regueiro M.D., Cornaglia P.S., Usaj G., Balseiro C.A., Phys Rev B 76, 075425 e (2007) Nyg˚ rd J., Cobden D.H., Bockrath M., McEuen P.L., Lindelof P.E., Appl Phys A 69, 297 a (1999) Nyg˚ rd J., Cobden D.H., Lindelof P.E., Nature 408, 342 (2000) a Numata T., Nisikawa Y., Oguri A., Hewson A.C., Phys Rev B 80, 155330 (2009) O’Connel M.J (ed.) Carbon Nanotubes: Properties, and Applications (Taylor and Francis, 2006) Okubo S., J Math Phys 18, 2382 (1977) ¯ Ono Y., Matsuura T., Kuroda Y., Physica C 159, 878 (1989) Onufrieva F.P., Sov Phys JETP 53, 1241 (1981) Onufrieva F.P., Sov Phys JETP 59, 986 (1984) Oreg Y., Goldhaber-Gordon D., Phys Rev Lett 90, 136602 (2003) Orellana P.A., Lara G.A., Anda E.V., Phys Rev B 74, 193315 (2006) Osorio E.A., O’Neill K., Wegewijs M.R., Stuhr-Hansen N., Paaske J., BjørnholmT., van der Zandt H.S.J., Nano Lett 7, 3336 (2007) Otte A.F., Ternes M., von Bergmann K., Loth S., Brune H., Lutz C.P., Hirjibehedin C.F., Heinrich A.J., Nature Physics, 4, 847 (2008) Paaske J., Flensberg K., Phys Rev Lett 94, 176801 (2005) Paaske J., Rosch A., Wă le P., Mason N., Marcus C.M., Nyg˚ rd J., Nature Physics, 2, 460 o a (2006) Palacios J.J Hawrylak P., Phys Rev B 51, 1769 (1995) Parcollet O., Hooley C., Phys Rev B 66, 085315 (2002) Park H., Park J., Lim A.K.L., Anderson E.H., Alivisatos A.P., McEuen P.L., Nature 407, 57 (2000) Park J., Pasupathy A N., Goldsmith J I., Chang C., Yaish Y Petta J R., Rinkoski M., Sethna J P., Abruna H.D., McEuen P.L., Ralph D.C., Nature 417, 722 (2002) Pauli W., Zs Phys 36, 336 (1926) Partoens B Peeters F.M., Phys Rev Lett 84, 4433 (2000) Pereira R.G., Laflorencie N., Affleck J., Halperin B., Phys Rev B 77, 125327 (2008) Petrashen M.I, Trifonov E.D., Applications of Group Theory in Quantum Mechanics (Dover Publications, New York 2009) Petry M.C., Bryce M.R., Bloor D (eds.) An Introduction to Molecular Electronics (Oxford, Oxford University Press, 1995) Platero G., Aguado R., Physics Repts 395, (2004) Plihal M., Gadzuk J W., Phys Rev B 63, 085404 (2001) Pohjola T., Kă nig J., Salomaa M.M., J Schmid, H Schoeller, and G Schă n, Europhys Lett o o 40, 189 (1997) Pohjola T., Schă ller H., Schă n G., Europhys Lett 55, 241 (2001) o o Pokrovsky V.L., Sinitsyn N.A., Phys Rev B 67, 144303 (2003) Pokrovsky V.L., Sinitsyn N.A., Phys Rev B 69, 104414 (2004) Pomeranchuk I.Ya., Zh Eksp Teor Fiz 11, 226 (1941) Popov V.N., ”Functional Integrals in Quantum Field Theory and Statistical Physics” (D Reidel Publishing Company, Dordrecht, 1983) Popov V.N., Fedotov S.A., Sov Phys – JETP 20, 1018 (1965) Posazhennikova A Coleman P., Phys Rev Lett 94, 036802 (2005) Potok R.M., Rau I.G., Shtrikman H., Oreg Y., Goldhaber-Gordon D., Nature 446, 167 (2007) Prokof’ev N.V., Stamp P.C.E., Phys Rev Lett., 80, 5794 (1998) Pustilnik M., Avishai Y., Kikoin K., Phys Rev Lett 84, 1756 (2000) 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 References 349 342 Pustilnik M., Borda L., Glazman L.I., von Delft J., Phys Rev B 69, 115316 (2004) 343 Pustilnik M., Glazman L.I., Phys Rev Lett 87, 216601 (2001); Phys Rev B 64, 045328 (2001) 344 Pustilnik M., Glazman L.I., J Phys.: Cond Mat 16, R513 (2004) 345 Pustilnik M., Glazman L.I., Hofstetter W., Phys Rev B 68, 161303 (2003) 346 Quay C.H.L., Cumings J., Gamble S.J., de Picciotto R., Kataura H., Goldhaber-Gordon D., Phys Rev B 76, 245311 (2007) 347 Rammer J., Smith H., Rev Mod Phys 58, 323 (1986) 348 Rashba E.I., in Problems of Condensed Matter Physics, eds Ivanov A.L., Tikhodeev S.G (Oxford, Clarendon Press, 2006), p 188 349 Raymond S., Studenikin S., Sachrajda A., Wasilewski Z., Cheng S.J., Sheng W., Hawrylak P., Babinski A., Potemski M., Ortner G., Bayer M., Phys Rev Lett 92, 187402 (2004) 350 Read N., Newns D.M., Doniach S., Phys Rev B 30, 3841 (1984) 351 Reed M.A., Quantum dots, Sci Amer., January 1993, pp 118-123 352 Ritus V.I., Sov Phys – JETP 24, 1041 (1967) 353 Roch N., Florens S., Bouchiat V., Wernsdorfer W., Balestro F., Nature 453, 633 (2008) 354 Roch N., Florens S., Costi T.A., Wernsdorfer W., Balestro, F., Phys Rev Lett 103, 197202 (2009) 355 Romeike C., Wegewijs M.R., Hofstetter W., Schoeller H., Phys Rev Lett 96, 196805 (2006); 97, 206601 (2007) 356 Rosch A., Paaske J., Kroha J., Wă le P., J Phys Soc Jpn 74, 118 (2005) o 357 Roulet B., Gavoret J., Nozi` res P., Phys Rev 178, 1078 (1969) e 358 Rushforth A.W., Smith C.G., Farrer I., Ritchie D.A., Jones G.A.C., Anderson D., Pepper M., Phys Rev B 73, 081305 (2006) 359 Sachrajda P.H., Ciorga M., Nano-spintronics with lateral quantum dots (Kluwer, Boston 2003) 360 Sadovskii M.V., Diagrammatics (World Scientific, Singapore, 2005) 361 Sadovskii M.V., Sov Phys – JETP 39, 845(1974) 362 Sapmaz S., Blanter Ya.M., Gurevich L., van der Zant H.S.J., Phys Rev B 67, 235414 (2003) 363 Saraga D.S., Loss D., Phys Rev Lett 90, 166803 (2003) 364 Sasaki S., De Franceschi S., Elzerman J.M., van der Wiel W.G., Eto M., Tarucha S., Kouwenhoven L.P., Nature 405, 764 (2000) 365 Sasaki S., Tarucha S., J Phys Soc Jpn 74, 88 (2005) 366 Sato M., Aikawa H., Kobayashi K., Katsumoto S., Iye Y., Phys Rev Lett 95, 066801 (2005) 367 Scheible D.V., Blick R.H., Appl Phys Lett 84, 4632 (2004) 368 Scheible D.V., Weiss C., Kotthaus J.P., Blick R.H., Phys Rev Lett 93, 186801 (2004) 369 Schiller A., de Leo L., Phys Rev B 77, 075114 (2008) 370 Schlosshauer M., Rev Mod Phys 76, 1267 (2005) 371 Schmid J., Weis J., Eberl K., von Klitzing K., Physica B 256-258, 182 (1998) 372 Schrieffer J.R., Wolff P.A., Phys Rev 149, 491 (1966) 373 Schă ttler H.-B., Fedro A.J., Phys Rev B 38, 9063 (1988) u 374 Seridonio A.C., Yoshida M., Oliveira L.N., Phys Rev B 80, 235318 (2009) 375 Shahbazyan T.V., Perakis I.E., Raikh M.E., Phys Rev Lett 84, 5896 (2000) 376 Shekhter R.I., Santandrea F., Sonne G., Gorelik L.Y., Jonson M., Low Temp Phys 35, 662 (2009) 377 Shibatani A., Toyozawa Y., J Phys Soc Jpn 25, 335 (1968) 378 Shirley J.N., Phys Rev 138, B979 (1965) 379 Simon P., Entin-Wohlman O., Aharony A., Phys Rev B 72, 245313 (2005) 380 Simon P., L` pez R., Oreg Y., Phys Rev Lett 94, 086602 (2005) o 381 Sinitsyn N.A., Phys Rev B 66, 205303 (2002); 382 Stafford C.A., Das Sarma S.: Phys Rev Lett 72, 3590 (1994) 383 Steele G.A., Gă tz G., Kouwenhoven L.P., Nature Nanotechnology, 4, 363 (2009) o 384 Stoneham A.M., Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (Clarendon Press, Oxford, 1975) 385 Stopa M., Phys Rev, Lett 88, 146802 (2002) 350 References 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 Stă ckelberg E.C.G., Helv Phys Acta 5, 369 (1932) u Sudarshan E.C.G., Mukunda N., and O’Raifeartaigh L., Phys Lett 19, 322 (1965) Sugimoto N., Onoda S., Murakami S., Nagaosa N., Phys Rev B 73, 113305 (2006) Sun Q-F., Wang J., Guo H., Phys Rev B 71, 165310 (2005) Takazawa Y., Imai Y., Kawakami N., J Phys Soc Jpn., 71, 2234 (2002) Tanaka Y., Kawakami N., Phys Rev B 72, 085304 (2005) Tanamoto T., Nishi Y., Phys Rev B 76, 155319 (2007) Tanamoto T., Nishi Y., Fujita S., J Phys.: Cond Mat 21, 145501 (2009) Tangerman R.G., Tjon J.A., Phys Rev A48, 1089 (1993) Tans S., Devoret M.H., Groeneveld R.J.A., Dekker C., Nature 394, 761 (1998) Taraphder A., Coleman P., Phys Rev Lett 66, 2814 (1991) Tilma T., Byrd M., Sudarshan E.C.G J Phys A: Math Gen 35, 10445 (2002) Tilma T., Sudarshan E.C.G J Phys A: Math Gen 35, 10467 (2002) Thomas L.T., Nature 117, 514 (1926); Phil Mag 3, (1927) Torio M.E., Hallberg K., Ceccatto A.H., Proetto C.R., Phys Rev B 65, 085302 (2002) Torio M.E., Hallberg K., Flach S, Miroshnichenko A.E., Titov M., Eur Phys J B 37, 339 (2004) Tsvelik A.M., Wiegmann P.B., Adv Phys 32, 453 (1983) ´ a Ujs´ ghy O., Kroha J., Szunyogh L., Zawadowski A., Phys Rev Lett 85, 2557 (2000) Unterreithmeier Q.P., Weig E.M., Kotthaus J.P Nature 458, 1001 (2009) Varma C.M., Yafet Y., Phys Rev B 13, 2950 (1976) Vavilov M.G., Glazman L.I., Phys Rev Lett 94, 086805 (2005) Vernek E., Bă sser C.A., Martins G.B., Anda E.V., Sandler N., Ulloa S.E., Phys Rev B 80, u 035119 (2009) Vernek E., Sandler N., Ulloa S E., Phys Rev B 80, 041302 (2009) Vidan A., Westervelt R.M., Stopa M., Hanson M., Gossard A.C., Appl Phys Lett 85, 3602 (2004) Vlad´ r K., Zawadowski A., Phys Rev B bf 28, 1564, 1582 (1983) a Vojta M., Phil Mag 86, 1807 (2006) Volkov D.V., Akulov V.P., JETP Letters 16, 438 (1972); Phys Lett B 46, 109 (1973) Wagner M., Merkt U., Chaplik A.V., Phys Rev B 45, 1951 (1992) Waldmann O., Phys Rev B 71, 094412 (2005) Waldmann O., Hassmann J., Mueller J.-M., Hanan G.S., Volkmer D., Schubert U.S., Lehn J.-M., Phys Rev Lett 78, 3390 (1997) Waldmann O., Zhao L., Thompson L.K., Phys Rev Lett 88, 066401 (2002) Warburton R.J., Schă ein C., Haft D., Bickel F., Lorke A., Karrai K., Garcia J.M., Schoenfeld a W., Petroff P.M., Nature 405, 926 (2000) Warburton R.J., Urbaszek B., McGhee E.J., Schullhauser C., Hă gele A., Karrai K., Govorov o A.O., Garcia J.M, Gerardot B.D., Petroff P.M., Nature 427, 135 (2004) Wegewijs M.R., Nowack K.C., New J Phys 7, 239 (2005) Wegewijs M R., Romeike C., Schă ller H., Hofstetter W., New Journ Phys 9, 344 (2007) o Wegner D., Yamachika R., Zhang X., Wang Y., Baruah T., Pederson M.R., Bartlett B.M., Long J.R., Crommie M F., Phys Rev Lett 103, 087205 (2009) Wei J Norman E., J Math Phys 4, 575 (1963) Wensauer A., Korkusinski M., Hawrylak P., Solid State Comm 130, 115 (2004) Wess J., Zumino B., Nucl Phys B 70, 39 (1974) Wick G.C., Wightman A.S., Wigner E.P., Phys Rev 88, 101 (1952) Wiel W.G van der, De Franceschi S., Elzerman J.M.,Tarucha S., Kouwenhoven L.P., Motohisa J., Nakajima F., Fukui T., Phys Rev Lett 88, 126803 (2002) Wightman A.S., Il Nuovo Cimento, 110b, 751 (1995) Wigner E.P., Group theory and its application to the quantum mechanics of atomic spectra (Academic Press, New York 1959) Wilczek F., Nature Physics 5, 614 (2009) Witten E., Nucl Phys B 185, 513 (1981); ibid., 202, 253 (1982) Wojs A., Hawrylak P., Solid State Commun 100, 487 (1996) 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 References 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 351 Yoshii R., Eto M., Journ Phys Soc Jpn 77, 123714 (2008) Yoshioka D., J Phys Soc Jpn 58, 32, 1516 (1989) Yotsutashi S., Maebashi H., J Phys Soc Jpn 71, 1705 (2002) Yu L.H., Natelson D., Nano Lett 4, 79 (2004) Zarand G., Brataas A., Goldhaber-Gordon D., Solid State Commun 126, 463 (2003) Zarand G., Chung C-H., Simon P., Vojta M., Phys Rev Lett 97, 166802 (2006) Zeh H.D., in Decoherence and the Appearance of a Classical World in Quantum Theory (eds Joos E et al, Springer-Verlag, Berlin, 2-nd ed., 2003) Chapter Zeldovich Ya.B., Sov Phys – JETP 24, 1006 (1967) Zeldovich Ya.B., Sov Phys – Uspekhi, 16, 427 (1973) Zener C., Proc Roy Soc (London), A 137, 696 (1932) Zener C., Phys Rev 82, 403 (1951) Zhuravlev A.K., Irkhin V.Yu., Katsnelson M.I., Lichtenstein A.I., Phys Rev Lett 93, 236403 (2004) ˇ Zitko R., Phys Rev B 81, 115316 (2010) ˇ Zitko R., Bonˇ a J., Phys Rev B 77, 245112 (2008) c ˇ Zitko R., Pruschke Th., New Journ Phys 12, 063040 (2010) Zweig G CERN Reports No 8181/Th 8419, 8419/Th 8412 (1964) ... Konstantin Kikoin Mikhail Kiselev Yshai Avishai Dynamical Symmetries for Nanostructures Implicit Symmetries in Single-Electron Transport Through Real and Artificial Molecules Ph.D Konstantin Kikoin... Kikoin et al., Dynamical Symmetries for Nanostructures: Implicit Symmetries in Single-Electron Transport Through Real and Artificial Molecules, DOI 10.1007/978-3-211-99724-6_1, © 2012 Springer-Verlag/Wien... Kikoin et al., Dynamical Symmetries for Nanostructures: Implicit Symmetries in Single-Electron Transport Through Real and Artificial Molecules, DOI 10.1007/978-3-211-99724-6_2, © 2012 Springer-Verlag/Wien

Ngày đăng: 29/05/2014, 23:50

Từ khóa liên quan

Mục lục

  • 1

    • Dynamical Symmetries for Nanostructures

      • Preface

      • Acknowledgements

      • Contents

      • 2

        • Chapter 1 INTRODUCTION

        • 3

          • Chapter 2 HIDDEN AND DYNAMICAL SYMMETRIES OF ATOMS AND MOLECULES

            • 2.1 Rigid Rotator

            • 2.2 Hydrogen atom and Runge-Lenz vector

            • 2.3 Dynamical symmetries for spin systems

            • 2.4 Hubbard atom and Fulde molecule

              • 2.4.1 Three-fold way for Hubbard atom

              • 2.5 Fock – Darwin atom

              • 2.6 Dynamical symmetry and supersymmetry

                • 2.6.1 Manifestations of supersymmetry in atomic models

                • 2.7 Quasienergy spectrum for periodical time-dependent problems

                • 4

                  • Chapter 3 NANOSTRUCTURES AS ARTIFICIAL ATOMS AND MOLECULES

                    • 3.1 Introductory remarks

                    • 3.2 Planar quantum dots

                    • 3.3 Vertical quantum dots

                    • 3.4 Self-assembled quantum dots

                    • 3.5 Complex quantum dots

                      • 3.5.1 Double quantum dots

                      • 3.5.2 Triple quantum dots

                      • 3.6 Molecules and molecular complexes

                        • 3.6.1 Fullerene molecules as quantum dots

                        • 3.6.2 Nanotubes as quantum dots

                        • 3.6.3 Single electron tunneling through metal organic complexes

Tài liệu cùng người dùng

Tài liệu liên quan