Toán Olympic quốc tế 2003 Tiếng Anh

71 320 0
Toán Olympic quốc tế 2003 Tiếng Anh

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

44th International Mathematical Olympiad Short-listed Problems and Solutions Tokyo Japan July 2003 44th International Mathematical Olympiad Short-listed Problems and Solutions Tokyo Japan July 2003 The Problem Selection Committee and the Organising Committee of IMO 2003 thank the following thirty-eight countries for contributing problem proposals. Armenia Greece New Zealand Australia Hong Kong Poland Austria India Puerto Rico Brazil Iran Romania Bulgaria Ireland Russia Canada Israel South Africa Colombia Korea Sweden Croatia Lithuania Taiwan Czech Republic Luxembourg Thailand Estonia Mexico Ukraine Finland Mongolia United Kingdom France Morocco United States Georgia Netherlands The problems are grouped into four categories: algebra (A), combinatorics (C), geometry (G), and number theory (N). Within each category, the problems are arranged in ascending order of estimated difficulty, although of course it is very hard to judge this accurately. Members of the Problem Selection Committee: Titu Andreescu Sachiko Nakajima Mircea Becheanu Chikara Nakayama Ryo Ishida Shingo Saito Atsushi Ito Svetoslav Savchev Ryuichi Ito, chair Masaki Tezuka Eiji Iwase Yoshio Togawa Hiroki Kodama Shunsuke Tsuchioka Marcin Kuczma Ryuji Tsushima Kentaro Nagao Atsuo Yamauchi Typeset by Shingo SAITO. CONTENTS v Contents I Problems 1 Algebra 3 Combinatorics 5 Geometry 7 Number Theory 9 II Solutions 11 Algebra 13 A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 A3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 A6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Combinatorics 21 C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 C5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 C6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Geometry 31 G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Number Theory 51 N1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 N3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 vi CONTENTS N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 N5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 N6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 N7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 N8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Part I Problems 1 [...]... Pi A Ui Pi R O B Q C Figure 3 For i = 1, , 6, the number of discs Dk having their centres inside Ti and intersecting S is less than or equal to 2003 Consequently, the number of discs Dk that intersect S is less than or equal to 2002 + 6 · 2003 = 7 · 2003 − 1 24 C3 Let n ≥ 5 be a given integer Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with... c; (iii) move the first digit of c to the end to obtain the number d (All the numbers in the problem are considered to be represented in base 10.) For example, for a = 2003, we get b = 3200, c = 10240000, and d = 02400001 = 2400001 = d (2003) Find all numbers a for which d(a) = a2 N3 Determine all pairs of positive integers (a, b) such that a2 2ab2 − b3 + 1 is a positive integer 10 N4 Let b be an integer... discs in the plane (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs Di Prove that there exists a disc Dk which intersects at most 7 · 2003 − 1 other discs Di Solution Pick a disc S with the smallest radius, say s Subdivide the plane into seven regions as in Figure 1, that is, subdivide the complement... discs in the plane (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs Di Prove that there exists a disc Dk which intersects at most 7 · 2003 − 1 other discs Di C3 Let n ≥ 5 be a given integer Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting . International Mathematical Olympiad Short-listed Problems and Solutions Tokyo Japan July 2003 44th International Mathematical Olympiad Short-listed Problems and Solutions Tokyo Japan July 2003 The. at most 7 2003 −1 other discs D i . C3. Let n ≥ 5 be a given integer. Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting. perfect square. N5. An integer n is said to be good if |n| is not the square of an integer. Determine all integers m with the following property: m can be represented, in infinitely many ways, as a

Ngày đăng: 05/04/2014, 00:14

Tài liệu cùng người dùng

Tài liệu liên quan