FUEL CELLS: Problems and Solutions potx

394 452 0
FUEL CELLS: Problems and Solutions potx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

FUEL CELLS FUEL CELLS Problems and Solutions Second Edition VLADIMIR S BAGOTSKY A.N Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences Moscow, Russia A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2012 by John Wiley & Sons, Inc All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives or written sales materials The advice and strategies contained herein may not be suitable for your situation You should consult with a professional where appropriate Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic formats For more information about Wiley products, visit our web site at www.wiley.com Library of Congress Cataloging-in-Publication Data Bagotsky, V S (Vladimir Sergeevich) Fuel cells : problems and solutions / Vladimir S Bagotsky.—2nd ed p cm Includes bibliographical references and index ISBN 978-1-118-08756-5 (hardback) Fuel cells I Title TK2931.B35 2012 621.31 2429—dc23 2011051083 Printed in the United States of America 10 CONTENTS PREFACE xi PREFACE TO THE FIRST EDITION SYMBOLS ABBREVIATIONS AND ACRONYMS PART I INTRODUCTION Introduction xiii xv xvii What Is a Fuel Cell? Definition of the Term, Significance of Fuel Cells for the Economy, The Working Principles of a Fuel Cell 1.1 1.2 1.3 1.4 Thermodynamic Aspects, Schematic Layout of Fuel Cell Units, Types of Fuel Cells, 13 Layout of a Real Fuel Cell: The Hydrogen–Oxygen Fuel Cell with Liquid Electrolyte, 13 1.5 Basic Parameters of Fuel Cells, 18 Reference, 24 v vi CONTENTS The Long History of Fuel Cells 2.1 The Period 2.2 The Period 2.3 The Period 2.4 The Period References, 38 PART II 25 Prior to 1894, 25 from 1894 to 1960, 28 from 1960 to the 1990s, 31 After the 1990s, 37 MAJOR TYPES OF FUEL CELLS Proton-Exchange Membrane Fuel Cells 41 43 3.1 3.2 3.3 3.4 History of the PEMFC, 44 Standard PEMFC Version from the 1990s, 47 Special Features of PEMFC Operation, 51 Platinum Catalyst Poisoning by Traces of CO in the Hydrogen, 54 3.5 Commercial Activities in Relation to PEMFCs, 56 3.6 Future Development of PEMFCs, 57 3.7 Elevated-Temperature PEMFCs, 64 References, 67 Direct Liquid Fuel Cells 71 Part A: Direct Methanol Fuel Cells, 71 4.1 Methanol as a Fuel for Fuel Cells, 71 4.2 Current-Producing Reactions and Thermodynamic Parameters, 72 4.3 Anodic Oxidation of Methanol, 72 4.4 Milestones in DMFC Development, 74 4.5 Membrane Penetration by Methanol (Methanol Crossover), 74 4.6 Varieties of DMFCs, 77 4.7 Special Operating Features of DMFCs, 79 4.8 Practical Models of DMFCs and Their Features, 81 4.9 Problems to Be Solved in Future DMFCs, 83 Part B: Direct Liquid Fuel Cells, 85 4.10 The Problem of Replacing Methanol, 85 4.11 Fuel Cells Using Organic Liquids as Fuels, 86 4.12 Fuel Cells Using Inorganic Liquids as Fuels, 91 References, 94 Phosphoric Acid Fuel Cells 5.1 5.2 5.3 Early Work on Phosphoric Acid Fuel Cells, 99 Special Features of Aqueous Phosphoric Acid Solutions, 100 Construction of PAFCs, 101 99 CONTENTS vii 5.4 Commercial Production of PAFCs, 102 5.5 Development of Large Stationary Power Plants, 103 5.6 The Future of PAFCs, 103 5.7 Importance of PAFCs for Fuel Cell Development, 104 References, 105 Alkaline Fuel Cells 107 6.1 6.2 6.3 6.4 6.5 6.6 Hydrogen–Oxygen AFCs, 108 Alkaline Hydrazine Fuel Cells, 115 Anion-Exchange (Hydroxyl Ion–Conducting) Membranes, 118 Methanol Fuel Cells with Anion-Exchange Membranes, 119 Methanol Fuel Cell with an Invariant Alkaline Electrolyte, 120 Direct Ammonia Fuel Cell with an Anion-Exchange Membrane, 121 References, 121 Molten Carbonate Fuel Cells 123 7.1 Special Features of High-Temperature Fuel Cells, 123 7.2 Structure of Hydrogen–Oxygen MCFCs, 124 7.3 MCFCs with Internal Fuel Reforming, 126 7.4 Development of MCFC Work, 128 7.5 The Lifetime of MCFCs, 129 References, 131 Solid-Oxide Fuel Cells 133 8.1 Schematic Design of Conventional SOFCs, 134 8.2 Tubular SOFCs, 136 8.3 Planar SOFCs, 140 8.4 Monolithic SOFCs, 143 8.5 Varieties of SOFCs, 144 8.6 Utilization of Natural Fuels in SOFCs, 146 8.7 Interim-Temperature SOFCs, 148 8.8 Low-Temperature SOFCs, 152 8.9 Factors Influencing the Lifetime of SOFCs, 154 References, 156 Other Types of Fuel Cells 9.1 Redox Flow Cells, 159 9.2 Biological Fuel Cells, 162 9.3 Semi-Fuel Cells, 167 9.4 Direct Carbon Fuel Cells, 169 References, 174 159 viii 10 CONTENTS Fuel Cells and Electrolysis Processes 177 10.1 Water Electrolysis, 177 10.2 Chlor-Alkali Electrolysis, 182 10.3 Electrochemical Synthesis Reactions, 185 References, 187 PART III 11 INHERENT SCIENTIFIC AND ENGINEERING PROBLEMS Fuel Management 189 191 11.1 Reforming of Natural Fuels, 192 11.2 Production of Hydrogen for Autonomous Power Plants, 196 11.3 Purification of Technical Hydrogen, 199 11.4 Hydrogen Transport and Storage, 202 References, 205 12 Electrocatalysis 207 12.1 12.2 12.3 12.4 Fundamentals of Electrocatalysis, 207 Putting Platinum Catalysts on the Electrodes, 211 Supports for Platinum Catalysts, 214 Platinum Alloys and Composites as Catalysts for Anodes, 217 12.5 Nonplatinum Catalysts for Fuel Cell Anodes, 220 12.6 Electrocatalysis of the Oxygen Reduction Reaction, 221 12.7 Stability of Electrocatalysts, 227 References, 228 13 Membranes 233 13.1 13.2 Fuel Cell–Related Membrane Problems, 234 Work to Overcome Degradation of Nafion Membranes, 235 13.3 Modification of Nafion Membranes, 235 13.4 Membranes Made from Polymers Without Fluorine, 237 13.5 Membranes Made from Other Materials, 239 13.6 Matrix-Type Membranes, 239 13.7 Membranes with Hydroxyl Ion Conduction, 240 References, 241 14 Structural and Wetting Properties of Fuel Cell Components Coauthor: Yurij M Volfkovich 14.1 Methods for Investigating Porous Materials, 244 243 ix CONTENTS 14.2 A New Method: The Method of Standard Contact Porosimetry, 245 14.3 Catalysts Used in Fuel Cells, 248 14.4 The Catalytic Layer, 252 14.5 The Gas-Diffusion Layer, 254 14.6 Membranes, 257 14.7 Influence of Structural and Wetting Properties on Fuel Cell Performance, 262 References, 264 15 Mathematical Modeling of Fuel Cells Felix N Bă chi u 267 15.1 Zero-Dimensional Models, 270 15.2 One-Dimensional Models, 270 15.3 Two-Dimensional Models, 271 15.4 Three-Dimensional Models, 272 15.5 Time Domain, 273 15.6 Concluding Remarks, 273 References, 274 16 Experimental Methods for Investigating Fuel Cell Stacks 275 16.1 Methods Developed Before 2007, 277 16.2 Optical, X-Ray, and EM Methods, 278 16.3 Neutron Beam–Based Methods, 281 16.4 Electrochemical Methods, 283 16.5 Miscellaneous Methods, 286 References, 288 17 Small Fuel Cells for Portable Devices 291 17.1 Special Operating Features of Mini-Fuel Cells, 292 17.2 Flat Mini-Fuel Batteries, 293 17.3 Silicon-Based Mini-Fuel Cells, 296 17.4 PCB-Based Mini-Fuel Cells, 298 17.5 Mini-Solid-Oxide Fuel Cells, 299 17.6 The Problem of Air-Breathing Cathodes, 300 17.7 Prototypes of Power Units with Mini-Fuel Cells, 301 17.8 Concluding Remarks, 304 References, 305 18 Nonconventional Design Principles for Fuel Cells 18.1 18.2 Conventional Design Principles and Their Drawbacks, 307 The Principle of Mixed-Reactant Supply: Mixed-Reactant Fuel Cells, 308 307 x CONTENTS 18.3 Coplanar Fuel Cell Design: Strip Cells, 310 18.4 The Flow-Through Electrode Principle, 312 18.5 Single-Chamber SOFCs, 313 18.6 Microfluidic Fuel Cells, 319 References, 321 PART IV 19 COMMERCIALIZATION OF FUEL CELLS Applications 325 327 19.1 19.2 19.3 19.4 19.5 19.6 Large Stationary Power Plants, 327 Small Stationary Power Units, 332 Fuel Cells for Transport Applications, 335 Portables, 341 Military Applications, 345 Handicaps Preventing a Broader Commercialization of Fuel Cells, 347 References, 348 20 Fuel Cell Work in Various Countries 351 20.1 20.2 20.3 20.4 20.5 20.6 20.7 Driving Forces for Fuel Cell Work, 351 Fuel Cells and the Hydrogen Economy, 353 Activities in North America, 355 Activities in Europe, 356 Activities in other Countries, 357 The Volume of Published Fuel Cell Work, 359 Legislation and Standardization in the Field of Fuel Cells, 361 References, 362 21 Outlook 363 21.1 21.2 Periods of Alternating Hope and Disappointment, 363 Some Misconceptions, 364 Klaus Mă ller u 21.3 Ideal Fuel Cells, 366 21.4 Projected Future of Fuel Cells, 368 References, 369 GENERAL BIBLIOGRAPHY 371 AUTHOR INDEX 373 SUBJECT INDEX 379 AUTHOR INDEX Abdelkareem, M.A., 76 Accorsi, R., 187 Adamson, K.-A., 333, 355 Agel, E., 240 Ahluwalia, R.K., 54, 338 Ahmed, D.H., 321 Ahmed, S., 194 Ahn, M., 244 Ahn, S.-J., 60 Alcaide, F., 187 Albertini, V.R., 281 Alonso-Valte, N., 225 Amendola, S.C., 91, 197 Anderson, R., 243 Andrew, M.R., 116 Andunes, R.A., 65 Antolini, E., 218 Antunes, R.A., 66 Apfel, H., 143 Appelby, 45 Arico, A.S., 74 Bacon, F.Th., 29, 108 Bae, C., 313 Bagotsky, V.S., 72, 176, 226, 245, 369 Baglio, V., 224 Baker, D.S., 128 Baker, T.S., 35 Barbir, F., 287 Bar-On, I., 62 Barroso, J., 88 Barton, S.C., 310 Barz, D.P., 55 Batista, M.S., 200 Bauer, E., 236 Baur, Emil, 28, 128, 134, 170 Beck, N., 240 Beckel, D., 299 Becquerel, A., 170 Benitez, R., 214 Bents, D.J., 182 Berezina, N.P., 259 Berg, P., 272 The index lists only the authors whose contributions are discussed explicitly in the text Authors appearing merely in literature references are not listed If an author is mentioned several times in the same chapter, only the first citation is indicated Fuel Cells: Problems and Solutions, Second Edition Vladimir S Bagotsky © 2012 John Wiley & Sons, Inc Published 2012 by John Wiley & Sons, Inc 373 374 Bergmann, E., 179 Betso, S,R., 165 Betthauer, C.C., 298 Bezerra, C., 224 Binder, H., 73 Biniwale, R.B., 205 Bischoff, M., 127, 329 Blinov, I.A., 247 Blomen, L.J.M/L., 104 Blum, A., 79 Bockris, J.O’M., 40, 369 Boillat, P., 283 Brankovic, S.R., 73 Breiter, Max, 37, 221 Brillas, E., 186 Brisse, A., 179 Broers, G.H.J., 35, 128 Brummer, S.B., 72 Brunner, D., 285 Bă chi, F.N., 257, 281 u Buergler, R.E., 315 Burlatsky, S.F., 60 Butler, J., 358 Cai, M., 60 Caillard, A.,C., 212 Cairns, Elton J., 10, 129, 170, 218 Cao, D., 169 Carlisle, Sir Anthony, 26 Carter, R., 239 Cayan, F.N., 199 Cha, H.-C, 279 Chalk, S.G., 356 Chalkova, E., 239 Chambers, A., 197 Chandra, M., 197 Chebotin,V.N., 25 Cheekatamarla, P.K., 199 Chen, C., 232 Chen, C.Y., 78 Chen, K.Y., 216 Cheng, X., 60 Cherepy, N.J., 173 Cheung, P., 255 Chin, D.-T., 185 Choban, E.R., 321 Choi, W., W.C., 237 Choo, H.-S., 172 Chu, D., 74 Chu, L.L., 296 Chuman, A., 89 Cifrain, M., 112 Cinderella, L., 46 Cleghorn, S J., 59 AUTHOR INDEX Codina, G., 161 Colpan, C.O., 273 Conte, M., 355 Corcoran, C.I., 211 Costamagna, P., 44, 154, 236 Coughlin, R.W., 171 Cowart, J.S., 81 Crawley, G., 57 Curtin, D.E., 232 Daino, M.M., 278 Danilov, M.D., 205 Davtyan, O.K., 28, 127, 134 Dehshpande, K., 219 Demirci, U.B., 86 Dhar, H.P., 54 Dhooge, P.M., 172 Divisek, J., 258 Dohle, H., 82 Doshi, R., 151 Doyon, J., 127 Drake, C., 244 Dunbar, Z.W., 285 Durante, G., 131 Dyer, C.K., 291, 308, 342 Eberle, U., 204 Eichenberger, P.H., 128 Eikerling, M., 261, 270 El-Deab, M.S., 225 Eller, J., 280 Elmore, G., 35 Entina, V.S., 73 Escudero, M.J., 46 Esquivel, J.P., 303 Evans, A., 300 Farhad, S., 300 Farooque, M., 128, 171 Fauvarque, J.F., 240 Feng, Y., 226 Fergus, J,F., 142 Ferrigno, R., 321 Fischer, W., 143 Fleischauer, M.D., 297 Fournier, G., 145 Franco, A.A., 273 Freunberger, S.A., 272 Friess, B,K., 255 Fuller, T.F., 262 Frumkin, A.N., 72 Frusteri, F., 132, 195 Fuerte, A., 147 Fujiwara, N., 166 375 AUTHOR INDEX Galvani, Luigi, 25 Gamburzev, S., 45 Gao, B., 278 Gao, F., 164 Garsuch, A., 226 Gasteiger, H.A., 74 Gebel, G., 282 George, P.A., 138 Ghezel-Ayagh, H., 350 Gileadi, E., 184 Gillibrand, M., 115 Gladysheva, T.D., 248 Glazebrook, R.W., 74 Gong, M., 148 Gong, W., 151 Gonzalez, E.R., 218 Gă rgă n, H., 277 o u Gorte, R.J., 147 Gostick, J.T., 255 Gottesfeld, S., 40, 47, 211 Gou´ rec, P., 113 e Grimes, P.G., 36 Grot, W.G., 45 Grove, W.R Sir, 26 Grubb, Th., 31, 100, 208 Gruber, D., 212 Guha, A., 252 Gull , A.E., 224 a Gă lzow, E., 113 u Guo, Q., 54 Gă r, N.M., 174 u Gurau, V., 255 Gurevich, I.G., 262 Ha, S., 91 Haber, Fritz, 28 Hackett, G.A., 173 Haile, S.M., 240 Hajimolana, S.A., 269 Hampson, N.A., 74 Hao, Y., 316 Hartnig, Ch., L., 281 Hatzell, M.C., 283 Haug, A.T, 217 He, H., 148 Herrera, O., 285 Hibino,T., 315 Hickner, M.A., 281 Hilpert, K., 142 Hoare, J.P., 221 Hobson, L.J., 237 Hojo, N., 103 Hoorfar, M., 257 Hou, J., 54 Howard, H.C., 170 Hu, J., 154 Huang, C., 199 Huang, Y.H., 148 Huijsmans, J.P.P., 152 Huggins, R.A., 174 Hobbs, B.S., 215 Horowitz, H.S., 227 Ioroi, T., 56 Isopo, A., 281 Izzo, J.R., 279 Iwahara, H., 315 Iwasita, T., 72 Jacques, W., 28, 170 Jasinski, R., 91, 116, 315 Jeng, K.T., 272 Jin, X., 172 Johnson, D.A., 161 Joon, K., 132 Kamarudin, S.K., 63, 197, 306 Kasahara, K., 103 Kauranen, P., 72 Kazim, A., 53 Kelley, S.C., 296 Kerzenmacher, S., 163 Ketelaar, J.A.A., 35, 128 Khan, E., 361 Khazova, O.A., 72 Kim, D., 82 Kim, H., 130 Kim, J.H., 139 Kim, H.K., 79 Kim, K.T., 105 Kim, T., 147 Kim, Y.S., 82 King, J.M., 368 Kinoshita K., 106, 221 Kjeang, E., 292, 324 Kojima, Y., 199 Kordesch, Karl, 33, 111 Korovin, N.V., 117, 359 Kramm, U.I., 226 Kronemayer, H., 145 Kră ger, Ph., 288 u Kothandaraman, R., 310 Kuhn, M., 288 Kuhn, R., 312 Kulesza, P.J., 215 Kumagai, M., 284 Kundu, A., 304 376 Lamy, C., 86, 181, 364 Lan, R., 105 Langer, Carl, 26 Langer, S.H., 187 Le Canut, J.-M., 284 Lee, H., 93, 130 Lee, H.K., 202 Lee, J.H., 285 Lee, S.J., 280 Lei, M., 227 L´ ger, J.-M., 72, 368 e Legros, B., 287 Li, H., 53, 290 Liebhafsky, H.A., 40, 170 Liu, A., 332 Liu, B.H., 96 Liu, D., 60 Liu, Q.L., 142, 181, 219 Liu, X., 272 Lopez-Atalaya, M., 161 Lorenz, H., 320 Luo, N., 93 Louis, A., 311 Lux, K.W., 218 Ma, Y.-L., 237 Maffei, N., 145 Mahapatra, M.K., 168 Maksimov, Yu M., 216 Mansour, C., 130 Mao, L., 273 Maric, R., 151 Masel, R.J., 286 Matic, H., 277 Matos, B.R., 236 Matsui, T., 240 McIntyre, D.R., 220 Megede, D zur, 197 Mehta, V., 50 Meng, H.B., 273 Meyers, J.P., 297 Miesse, C.M., 302 Mikhailova, A.A., 216 Miller, J.F., 355 Miller, M., 62 Milliken, J., 356 Minh, N.G., 129 Mitchell, W., 36 Mitlitski, F., 162 Mond, L., 26 Mondal, S.K., 220 Moore, G., 269 Moseley, P.T., 335 Mukerjee, S., 224 AUTHOR INDEX Murray, J.N., 74 Murthy, A.S., 161 Myles, K.M., 143 Neburchilov, V., 168 Neergat, M., 102 Nicholson, William, 26 Niedrach, Leonard, 31 Nikolin, F., 330 O’Day, M.J., 368 Oedegaard, A., 79 O’Hayre, R., 298 Okada, G., 172 Okine, R., 235 Olapade, P.O., 273 Onda, K., 196 Orazem, M.E., 283 Ostwald, W.F., 4, 27, 169 Oszcipok, M., 54 Owejan, J.P., 282 Paffet, M.T., 104, 224 Pan, H., 76 Pan, Y.Y., 301 Park, J.-S., 241 Park, S., 257 Park, S.K., 330 Patil, A.S., 346 Patil, P., 172 Patterson, T.W., 61 Peled, E., 45, 239 Perry, M.L., 53, 334 Peters, R., 194 Petry, O.A., 72 Pettersson, J., 182 Pfrang, A., 279 Piela, P., 83 Pinilla, J.M., 194 Pistoya, G., 306 Plomp J., 128 Plyasova, L.M., 212 Podlovchenko, B.I., 249 Pointon K., 174 Ponce de Le´ n, C., 162 o Popov, B.N., 257 Posner, J.D., 321 Priestnall, M.A., 313 Psoma, A., 340 Qian, W., 306 Raman, R.K., 93 Rangel, C.M., 204 377 AUTHOR INDEX Raney, M., 110 Rasten, E., 178 Reeve, R.W., 309 Reichman, S., 239 Ren, X., 75 Reum, M., 272 Riess, I., 315 Rice, C., 90 Riley, B., 157 Rismani-Yazdi, G.S., 166 Romm, J.J., 355 Roos, M., 273 Roth, C., 56 Rousseau, S., 87 Roy, S.K., 283 Sacc` , A., 236 a Saha, M.S., 215 Salgado, J.R., 356 Salloum, K.S., 321 Sammes, N.M., 139 Samms, S.R., 238 S´ nchez, D., 332 a Savadogo, O., 224, 236, 242 Scheiba, F., 279 Schmidt, H., 62 Schmidt, V., 55 Schmittinger, W., 62 Schmitz, A., 298 Schneider, A., 288 Schultze, M., 51 Scott, K., 240, 310 Scrosati, B., 176 Sekine, F., 287 Seland, F., 238 Selman, J.R., 132 Seo, A., 224 Seo, D.J., 304 Setoguchi, T., 151 Shao, M., 221 Shao,Y., 67, 228 Shao, Z., 315 Shao, Z.-G., 237 Shao, Z.P., 151 Shen, P.K., 220 Shibahara, Y., 287 Shim, J., 56, 219 Shimizu, T., 302 Shukla, A.K., 309 Singhal, S.C., 57 Siracusano, S., 184 Skyllas-Kazacos, M., 162 Soler, L., 197 Song, R.H., 102 Song, S., 178 Songbo, X., 131 Spernjak, D., 287, 292 Springer, T.E., 270 Srinivasan, S., 44, 211, 366, 368 Stanislowski, M., 142 Steigerwalt, E.S., 217 Stepanov, G.K., 128 Stimming, U., 155 St-Pierre, J., 278 Strayer, E., 334 Stră bel, R., 205 o Stucki, S., 178 Stumper, J., 286 Sun, Ch., 157 Susai, T., 45 Suzuki, T., 139, 315 Swette, L.L., 178, 227 Swider, K.W., 46 Svensson, A.M., 270 Takeshi, M., 233 Tamura, K., 74, 118 Tarasevich, M.R., 165, 220 Tian, Y., 280 Ticianelli, E.A., 270 Tawfik, H., 64 Tazi, B., 236 Thomassen, M., 184 Thompson, D., 46 Tender, K., 166 Tomantschger, K., 113 Tomczyk, P., 132 Tomita, A., 155 Topcagic, S., 164 Tributsch, H., 225 Tsai, T., 152 Tseung, A.C.C., 215 Tsushima, S., 287 Tu, H., 155 Tucker, M.C., 157 Tusseeva, E.K., 250 Uda, T., 67 Urbani, F., 304 Van Gool, W., 311 Vega, J.A., 121 Verda, V., 330 Vielstich, Wolf, 72 Vincent, C.A., 72, 176 Vogel, B., 287 Volfkovich, Yu.M., 243, 245 378 Wan, C.H., 56 Wan, Y., 241 Wainright, J.S., 91, 237 Walker, A.L., 166 Walker, C.W., 166 Walker, G., 206 Wang, B., 218 Wang, J., 87 Wang, M., 286 Wang, X., 76 Wang, Y., 88 Washburn, E.W., 245 Wasterlain, S., 285 Waszczuk, P., 73 Watanabe, M., 55, 74, 105 Watanabe, T., 127 Weaver, R.D., 172 Wee J.-H., 93, 219 Weissbart, J., 136 Wen, Y., 161 Wen, Z., 215 Whitaker, R., 103 Wilcon M., 55 Wild, P.G de, 199 Wilkinson, D.P., 76 Willert-Parada, M., 235 Williams, M.C., 132 Wingard, L.W., 165 Winkler W., 320 Winsel, A., 108, 225 Wu, J., 284 AUTHOR INDEX Wynveen, 100 Xie, C., 302 Yablochkov, P., 170 Yamamoto, O., 138 Yang, C., 236 Yang, H., 81 Yang, S.-H., 284 Yano, M., 317 Yaropolov, A.I., 165 Ye, Q., 82 Ye, T.S., 81 Yousfi-Steiner, N., 276 Yu, E.H., 119 Yu, X., 62, 91, 224 Yuan, W., 76 Yuan, X, 187 Yusfi-Steiner, N., 228 Zaidi, S.M.J., 233 Zawodzinski, T.A., 47, 211 Zhang, B., 303 Zhang, E., 162 Zhang., F., 228 Zhang, J., 65 Zhang, X., 303 Zheng, R., 236 Zhigang, S., 181 Zhou, M., 166 Zhu, L., 297 SUBJECT INDEX Academy of Sciences of the USSR, 359 Acoustic emission (AE) technique, 287 Active reactant supply, 77 Advanced Battery Consortium (USABC), 355 Advanced Energy Initiative (AEI), 356 Advantages of high-temperature fuel cells, 123 AFC with matrix electrolyte, 110 Aging of methanol adsorption products, 84 Air-breathing cathode, 293 Air pollution in large cities, 355 Alcohol biobattery, 164 Alicante University, Spain, 161 Alkaline electrolyte, 167 Alkaline fuel cell (AFC), 33, 107 Allis Chalmers, 112, 110 Alloys of platinum with different metals, 217 All-vanadium redox flow cells, 161 Alternating periods of hope and disappointment, 363 Alternatives to traditional vehicles with ICE, 335 Ammonia SOFC, 145 A.N Frumkin Institute of Physical Chemistry and Electrochemistry, 245 Analogy between processes taking place in fuel cells and in the human body, 301 Anion-exchange (hydroxyl ion conducting), 118 Anode, 11, 17 Anode creep of MCFCs, 130 Ansaldo S.p.a., Italy, 128 Apollo spacecraft, 33 Apparent internal cell resistance, 14 Asahi Chemicals, 45 Asbestos matrix, 33 Australian coal, 173 Autothermal reforming (ATR), 194 Bacon’s fuel cell battery, 29, 108, 211 Bacterial fuel cell, 165 Ballard Power Systems, Canada, 56, 133 Band design of a flat battery, 294 Basicity of carbonate melts, 129 Battery for the Apollo spacecraft, 33, 109 Battery for the Orbiter space shuttle, 110 Bifunctional oxygen catalysts, 216 Bifunctional oxygen electrode, 181 Bioelectrocatalysis, 164 The index lists only those page numbers where a given term is used for the first time, or where another aspect of the same term is discussed Fuel Cells: Problems and Solutions, Second Edition Vladimir S Bagotsky © 2012 John Wiley & Sons, Inc Published 2012 by John Wiley & Sons, Inc 379 380 Bioethanol, 86, 192 Biological fuel cells, 163 Bipolar electrode, Bipolar plate, 6, 47 Bipolar plates for SOFC, 140 Borohydride fuel cell (DBHFC), 91 Boudouard equilibrium, 171 Boudouard reaction, 127 Bundle of tubular SOFC, 137 Buran space shuttle, 114 California Institute of Technology, 325 Capillary equilibrium, 246 Capillary membrane, 257 Capillary pressure, 244 Carbonaceous support for catalyst, 248 Carbonate melts as electrolyte, 9, 124 Carbonation of alkaline electrolytes, 113 Carbon materials, 226 Carbon nanotube (CNT), 214 Carnot cycle, 21 Carnot-cycle limitations, 21 Catalytic activity of platium alloys for ORR, 224 Catalytic layer, 252 Cathode, 11 Cell voltage, Center for Electrochemical Systems and Hydrogen Research, Texas A&M University, 47 Ceramic Fuel Cells Limited (CFCL), Australia, 259 Ceria solid electrolyte, 150 Cermet (ceramic-metal composite, 134 Chalcogenids of transition metals, 309 Characteristic diffusion length, 263 Characteristic Ohmic length, 263 Chemical hydrogen storage, 205 Chinese Academy of Sciences, 358 Chlor-alkali electrolysis, 182 Chlorine fuel cell, 184 Chrysotile asbestos, 257 Clean Urban Transport for Europe (CUTE) commission, 278, 334 CNAM Laboratory for Industrial Electrochemistry, Paris, 240 CO2 buildup in the bipolar plate channels, 81 Cold combustion, Combined heat and power systems (CHPS), 57, 329 Combined oxygen ion and proton conductivity, 131 Compact mixed reactant fuel cell, 313 Comparison of manmade technical devices with their natural analogs, 366 SUBJECT INDEX Composite membrane, 235 Compressed hydrogen, 202 Conductivity of YSZ-type electrolytes, 150 Confocal microscopy, 278 Conversion of thermal energy, Coplanar fuel cell, 310 Corrosion of carbon catalyst’s support, 60, 228 Cost estimates for DMFC, 84 FCV power plant, 334 PAFC, 108 PEMFC, 62 Coulombic efficiency, 16 Creeping of alkaline electrolytes, 108 Crossover of borohylride, 93 methanol, 74 ruthenium ions, 83 Current producing reaction, 14 Current-voltage relation (curve), 20, 53 Cyclic voltammetry, 284 Daimler-Chrysler, 197 Degradation of Nafion membranes, 60, 235 Degradation of PTFE, 59 Dehydration of the membrane, 52 Department of Energy of the US (DOE), 238 Deposition of Pt catalysts on electrodes, 211 Desulfurization of natural fuels, 199 Development of fuel cells for portables, 291 Development of new catalysts for the oxygen electrodes, 320 Devices for fuel conversion, reactant storage, regulating and monitoring, 14 thermal management, Differential electrochemical mass spectometry, 87 Dimensionality of mathematical models, 269 Direct ammonia fuel cell, 121 Direct borohydride fuel cells (DBHFC), 91 Direct carbon fuel cell (DCFC), 169 Direct electrochemical oxidation of carbon monoxide, 126 Direct ethanol fuel cells (DEFC), 86 Direct-flame SOFC (DF-SOFC), 145 Direct formic acid fuel cell (DFAFC), 89 Direct fuel cell, 127 Direct hydrazine fuel cells (DHFC), 93 Direct internal-reforming fuel cell (DIRFC), 127 Direct utilization of natural fuels in fuel Cells, 146 Disadvantage of SC-SOFCs, 315 381 SUBJECT INDEX Discharge of a fuel cell, current, 15 power, 15 voltage, 19 Dissolution of nickel oxide in carbonate melts, 129 Doppel-Skelett (DSK) = double skeleton electrodes, 33 Dow Chemicals, 45 Dry reforming (DR) of methane, 194 DSA electrode, 182 Dual ion beam-assisted deposition, 214 Dual-phase water system, 52 Du Pont de Nemours, 44 DuPont fuel cells, 235 Dwindling world resources of fossil fuels, 252 Ebara Ballard, Comp., Japan, 233 ´ Ecole Polytechnique, Montr´ al, Canada, 315 e Effect of climate, 19 Effective pore radius, 248 Efficiency of CO2 formation, 91 Efficiency (of energy conversion) theoretical (thermodynamic), 4, 16 of design, 16 of reactant utilization, 16 of voltage, 16 overall, 21 Efficient utilization of platinum catalysts, 44 Electrocatalysis, 37, 207 Electrocatalysts for the 12-electron oxidation of ethanol, 88, 369 Electrocatalysis of the oxygen reduction reaction (ORR), 224 Electrochemical carbon oxidation in aqueous solutions, 171 melts, 172 solid electrolytes, 174 Electrochemical energy conversion, 31 Electrochemical impedance spectroscopy (EIS), 284 Electrochemical oxidation of coal, 18, 169 Electrochemical oxidation of hydrocarbons, 31 Electrochemical reaction, 11 Electrochemical synthesis reaction, 185 Electrochemical utilization of the coal’s energy, 169 Electrochimica Acta, 360 Electrode, 11 Electrode potential ireversible (nonequilibrium), 17 reversible (equilibrium), 17 Electrolytes aqueous solution, 12 molten carbonates, 129 solid oxides, 150 Electrolyzer with proton-conducting membranes, 178 Electromotive force (EMF), 17 Electron density in catalysts, 227 Electron paramagnetic resonance (EPR), 287 Electroosmotic water transfer, 264 Electrospray technique, 214 Elevated temperature PEMFC (ET-PEMFC), 64 Energy density, 22 Energy-dispersive x-ray (EDX) mapping, 279 Energy isotherm, 254 E.T.H., Ză rich, Swizerland, 315 u Ethanol fuel cell (DEFC), 86 European Hydrogen and Fuel Cell Platform, 356 Excess surface energy, 245 Exchange current density, 11 Faradaic efficiency, 26 Filler in Nafion membranes, 235 Filter-press battery, 10 Flat mini-fuel battery, 293 Flat-tube SOFC, 140 Flip-flop design of a flat battery, 294 Flooding degree, 263 Flooding of an porous electrode, 10, 263 Flow-through electrode, 312 Fluorescence spectroscopy, 278 Formation of carbon deposits (coking), 193 Formic acid fuel cell (DFAFC), 91 Free binding energy, 248 ‘‘Fuel-cell boom” first, 33 second, 40 Fuel cell directory, 351 manufacturer Directory, 351 meetings and expositons, 360 power plant, 2, 34, 54 stack, 6, 44 Fuel-cell-based power plant for submarine vessels, 340 Fuel Cell Energy Inc., Danbury, CT, 127 Fuel cell lifetime, 28, 44, 129, 148 Fuel cells and chemical cogeneration, 186 Fuel cells and the hydrogen economy, 353 Fuel Cells and Hydrogen Joint Technology Initiative (JTI), 357 Fuel Cell Today newsletter, 361 Fuel-cell-related membrane problems, 234 Functions of membranes, 234 382 Galvanic cell, Gas electrode, 14 Gas-diffusion electrode with barrier layer, 109 Gas-diffusion layer (GDL), 46, 254 Gas-diffusion layers (GDL) for electrolizers, 176, 254 Gasification of biomass, 195 Gasification of carbon resources, 195 Gas-impermeable barrier layer, 29, 33 Gas-liquid diffusion layer (GLDL), 79 Gemini spacecraft, 33, 44 General Electric, 33 Global warming, 352 Glucose fuel cell, 163 Goals of mathematical modeling, 267 Graphene nanosheet, 165, 215 Grotthuss mechanism of ion migration, 100 Grove’s gas voltaic battery, Hanbat National University (Korea), 173 Heat exchanger plate, 53 Heat generation, 17 Heat management in PEMFC, 53 Heteropoly acids (HPA) as fillers in membranes, 234 High-temperature electrolyzer, 179 High-temperature molten electrolytes, 28 ‘‘Hot Module” MCFC battery, 127 Hybrid car with an ICE and an electric drive, 336 Hybrid plant, 329 Hydrazine fuel cell, 93 Hydrocarbon reforming for autonomous power plants, 196 Hydrogen as fuel for fuel cells, 191 Hydrogen economy, 287 Hydrogen from inorganic products, 197 Hydrogen transport and storage, 192 Hydrogen-oxygen system for storing electrical energy, 179 Hydrophilic properties, 244 Hydrophobic properties, 244 Hydrophobizing efficiency, 256 ‘‘Ideal fuel cells”, 366 Implantable glucose fuel cell, 165 Indirect internal-reforming fuel cell (IIRFC), 127 Individual fuel cell, Influence of crystallographic orientation on catalytic activity, 210 Influence of lattice defects on catalytic activity, 210 Information newsletter Fuel Cell Today, 361 Institute of Gas Technology, Chicago, 128 SUBJECT INDEX Institute of High-Temperature Electrochemistry, Ekaterinbourg, Russia, 128 Intercell connector, Interconnector for SOFC, 137 Interim-temperature SOFC (IT-SOFC), 148 Intermediate redox system, 164 Intermetallic compounds of platinum with rare-earth metals, 218 Internal fuel reforming, 126 Internal-reforming fuel cell (IRFC), 127 International Electrotechnical Commission (IEC), 361 International Journal of Hydrogen Energy, 353 International Society of Electrochemistry (ISE), 360 Ion-exchange membrane composite, 259 heterogenous, 258 homogenous, 253 Ionomer, influence of, 253 Iron-air cell, 167 Iron-chromium redox flow cells, 160 Ishikawajima Harima Heavy Industries Co., Japan, 128 Isotherms of binding energy, 254 capillary pressure, 261 sorption and desorption, 261 Jet Propulsion Laboratory, University of California, Pasadena, 81 Journal of Power Sources, 360 Jă lich Forschungszentrum, Germany, 82 u Kelvin equation, 248 Kinetics and mechanism of electrochemical oxygen reduction, 221 Kinetics and mechanism of electrochemical methanol oxidation, 72 Korea Institute for Science and Technology, 82, 302 Korolev “Energy” Space Corporation, 359 Kyoto Protocol, 352 Laplace equation, 249 Large stationary power plant, 327 Latent heat of reaction, Lawrence Livermoore National Laboratory (LLNL), USA, 173, 182 Layout of SC-SOFCs, 315 Lifetime, 22 Life time of AFC, 113 MCFC, 128 383 SUBJECT INDEX PAFC, 104 SOFC, 148 Linear sweep voltammetry (LSV), 284 Liquefied hydrogen, 203 Lithiated nickel oxide, 109 Los Alamos National Laboratory (LANL), USA, 47, 82 Low-temperature SOFC (LT-SOFC), 149 Lower heat value, LT-SOFC with composite electrolytes, 153 Macrocyclic N4 compound of transition metals, 226, 309 Magnetic resonance imaging (MRI), 286 Main area of application for SC-SOFCs, 315 Matrix-type membrane, 237 Maximum admissible discharge current (power), 15 Meaning of the word “fuel cell”, 37 Mechanism of methanol oxidation, 72 Mechanism of oxygen ion transportation, 134 Membraneless fuel cell, 319 Membranes made from polymers without fluorine, 237 with hydroxyl ion conduction, 118, 240 Mercurylike metal, 209 Metal-air cell, 167 Metal corrosion in MCFCs, 130 Metal hydrides, 203 Methanation reaction, 200 Methane hydrate (CH4 · nH2 O), 352 Methanol crossover, 74 Methanol fuel cells with an anion-exchange membrane, 119 an invariant alkaline electrolyte, 120 Methanol reforming, 297 Method of increasing electrode selectivity, 310 mercury porosimetry, 244 standard contact porosimetry, 245 Micro-electromechanical system (MEMS), 295 Microfluidic fuel cell, 319 Microfluidics, 319 Micromechanical system processing, 312 Microtubular SOFC, 139 Micro-Raman measurements, 277 Military application of fuel cells, 345 Mini-power plant with DMFC (DLFC), 302 with PEMFC, 302 Mini-reformed hydrogen fuel cell (MRHFC), 304 Mini-solid oxide fuel cell, 299 Misconceptions, 364 Missouri-Rolla University, USA, 315 Mixed reactant fuel cell, 308 Molten carbonate fuel cell (MCFC), 34, 123 Monolithic SOFC, 134 Motorola, Inc., 302 MTU CFC Solutions, GmbH, Munich, 128 Nafion membrane, 44, 234, 258 Nagoya University, Japan, 325 Nanocomposite of gold particles, 165 Nanoelectrocatalysis, 369 Nanostructure of porous materials, 258 NASA, 182 Natural gas (methane), 192 Navier-Stokes equation, 269 Nernst equation, 125, 160 Nernst losses, 126 Nernst’s (glower) lamp, 134 Neutron radiographic imaging, 278 New Energy and Industrial Technology Development Organization (NEDO), 357 New types of materials for SOFC electrodes, 151 New types of solid electrolytes, 149 Nickel-hydrogen storage cell, 168 Non-platinum catalysts for fuel cell anodes, 219 Nonuniformity of a fuel cell battery, 61 Onionlike fullerene (OLF), 215 Open circuit voltage, 13 Open-circuit potential of the oxygen electrode, 222 Operating voltage, 13 Orbiter space shuttle, 110 Orientation of adsorbed ionomer, 253 ORR catalysts without noble metals, 226 ORR catalysts without platinum, 225 Oxygen concentration polarization, 59 Oxygen electrode for chlorine cells, 183 Palladium diaphragm pump, 201 Palladium electrocatalyst, 221 Passive reactant supply, 77 Patents in the field of fuel cells, 361 PCB-based mini-fuel cell, 298 Perfluorinated sulfonic acid (PFSA), 234 Perfluorinated sulfonic acid polymer (PSAP), 44 Phosphoric acid fuel cell (PAFC), 35, 99 ‘‘Photon” power plant, 114 Planar SOFC, 140 Platinized platinum, 248 Platinum alloys as catalysts for anodes, 217 Platinum catalysts alloyed with non platinum metals, 105 Platinum catalysts in a conductive polymer matrix, 216 384 Platinum catalyst poisoning by CO, 54 Platinum deposition in membranes, 59 Platinum nanoparticles in a matrix of conductive polymer, 216 Platinum-ruthenium catalysts, 48, 208 Platinum-tin electrocatalyst, 218 Plug power, 57 Polybenzimidazole (PBI) membranes, 237 Polycon membrane, 270 Polyether ether ketone (PEEK) membranes, 238 Pore blocking, 247 Pore corrugation, 276 Pore size distribution function, 244 Porotech, Inc., 247 Porous electrode, 14 Porous electrolyte matrix, 103 Porous matrix for carbonate melts, 124 Positron annihilation spectroscopy, 287 Power density, 21 Power plant based on fuel cells, 11 Power plant MW in Santa Clara (California), 130, 266 Power source for portables, 277 Pratt & Whitney, 34 Pressure drop measurements, 278 Princeton University, 234 Printed-circuit board (PCB), 245, 247 Problems in the use of fuel-cell vehicles (FCV), 336 Production of hydrogen for autonomous power plants, 196 Proton exchange membrane fuel cell (PEMFC), 36, 45 Prototypes of IT-SOFC, 152 Purification of technical hydrogen, 199 Pyrophosphate ion, 101 Raman microcoscopy, 278 Raney-metal catalysts, 110 Reaction enthalpy, Reaction entropy, Reaction Gibbs energy, Reaction thermal energy, Reaction with carbon dioxide, 185 Recrystallization of platinum catalysts, 59 Redox flow cells, 158 Redox reaction, Reforming by partial oxidation (POX), 193 Reforming of natural kinds of fuels, 192 Release of greenhouse gases (CO2 ), 286 Reliability and convenient manipulation, 26 Reliability of PAFC, 106 Remote-area power supply (RAPS), 271 Residence-time distribution, 278 SUBJECT INDEX Reversible air electrode, 168 Reversible fuel cell (URFC), 180 Reversible (unitized) PEMFC system, 180 Royal Military College of Canada, 241 Rupture of C-C bonds, 88 Ruthenium-based chalcogenides as catalysts, 225 Santa Clara, California, MCFC power plant, 128 Scanning electron microscopy (SEM), 279 Science Council on Fuel Cells, 359 Sealing of SOFC, 141 Selective catalyst, 309 Self-regulation of water removal, 101 Short-duration (pulse) discharge, 19 Siemens (Germany), 111 Siemens-Westinghouse Corp., 139, 266 Siemens-Westinghouse 100-kW power plant, 266 Silicon-based mini-fuel cell, 245 Single-chamber- SOFC, 144, 313 Skeleton-type catalysts, 110 Small-angle neutron scattering (SANS), 282 Solid-oxide fuel cell (SOFC), 35, 133 Solid State Energy Conversion Alliance (SECA), 355 Special operating features, 23 of mini-fuel cells, 292 Specific energy per unit mass (weight), 22 Specific energy per unit volume, 22 Specific surface area of a catalyst, 210 Spontaneous recrystallization of catalysts, 228 Sputter deposition (SD), 212 Stability of electrocatalysts, 227 Standard hydrogen electrode (SHE), 16 Standardization in the field of fuel cells, 361 Stanford Research Institute (SRI) Menlo Park, CA, 172 Stanford University (California), 173 Startup, 23 Startup and shutdown of SOFC power plants, 148 Steam electrolysis, 179 Steam gasification of coal, 126, 193 Steam reforming (SR), 128, 193 Stokes mechanism of ion migration, 100 Stresses in planar SOFC, 143 Strip cell, 310 Sulfur compounds in natural fuels, 192 Sulfur dioxide-oxygen fuel cell, 186 Support for platinum catalysts, 214 Surface migration cell, 311 Swelling of membrane, 257 Synchrotron x-ray tomography, 288 Synergistic catalytic effect, 208 Synthesis of useful intermediates, 186 385 SUBJECT INDEX Technical Committee IEC No 105 (Fuel Cell Technologies), 361 Technion Institue, Israel, 315 Tel Aviv University, Israel, 237 Template-based method, 226 Theories of gas-diffusion electrodes, 256 Thermal decomposition of methane, 194 Thin-film LT-SOFC, 152 Three-dimensional models, 272 Toray paper, 266 Toshiba (Japan), 102 Transient modeling, 273 Transient response, 19 Transition metal oxides as support for catalysts, 215 Transition metals or d-metals, 209 Tubular SOFC, 136 Tungsten carbide catalyst, 220 Two-dimensional models, 271 Types of fuel cells electrolyte type, 13 reactant type, 13 working temperature, 13 Union Carbide Comp., 33 Unipolar O2− ion conduction, 133 United Technologies Corporation (UTC), 102 Unitized regenerative fuel cell (URFC), 180 University of Alberta (Canada), 187 University of Amsterdam (The Netherlands), 35 University of Hongkong, China, 82 University of New South Wales (Australia), 162 University of Queensland (Australia), 173 Ural Integrated Electrochemical Plant, 116, 293 US Army Communications and Electronics Research, Development and Engineering Center (CERDEC), 346 Utilization or elimination of CO2 , 185 Vaillant Group, Germany, 334 Vanadium redox flow cell, 161 Varta, 114 Volatilization of molten carbonate, 131 Volmer equation, 263 Volta pile, 27 Voltage of an individual fuel cell, 17 Vulcan XC-72 carbon black, 250 Wafers of doped (semiconducting) silicon, 295 Washburn method, 245 Water electrolysis, 177, 196 Water management in PEMFCs and DMFCs, 51, 275 Water recirculation in DMFC, 80 Water-gas shift reaction WGSR, 199 Ways of comparing fuel-cell parameters, 21 Westervoort SOFC power plant, 138 Westinghouse Electric Corporation, Pittsburgh, PA, 35, 136 Wetting angle, 248 Wetting properties, 245 W.L Gore & Associates, 45 X-ray computed tomography, 279 diffraction (XRD), 279 microtomography, 278 neutron beam techniques, 278 photoelectron spectroscopy, 211 Yttria-stabilized zirconia YSZ, 133 Zeitschrift fă r Elektrochemie, 27 u Zero-dimensional models, 270 Zinc-air cell, 167 ... xiv PREFACE TO THE FIRST EDITION development and applications of fuel cells and want to gain an overview of fuel cell problems and their economic and scientific significance This book is thus focused... Types of Fuel Cells 9.1 Redox Flow Cells, 159 9.2 Biological Fuel Cells, 162 9.3 Semi -Fuel Cells, 167 9.4 Direct Carbon Fuel Cells, 169 References, 174 159 viii 10 CONTENTS Fuel Cells and Electrolysis... (Vladimir Sergeevich) Fuel cells : problems and solutions / Vladimir S Bagotsky.—2nd ed p cm Includes bibliographical references and index ISBN 978-1-118-08756-5 (hardback) Fuel cells I Title TK2931.B35

Ngày đăng: 24/03/2014, 01:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan