Một số định lí thác triển của các hàm chỉnh hình tách với kỳ dị đa cực

54 555 0
Một số định lí thác triển của các hàm chỉnh hình tách với kỳ dị đa cực

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN THỊ THU HƯƠNG MỘT SỐ ĐỊNHTHÁC TRIỂN CỦA CÁC HÀM CHỈNH HÌNH TÁCH VỚI KỲ DỊ ĐA CỰC Chuyên ngành: Giải tích Mã số: 60.46.01 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. Nguyễn Thị Tuyết Mai Thái nguyên -2010 1 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn MỞ ĐẦU Nghiên cứu về ánh xạ chỉnh hình tách biến là một trong những hướng nghiên cứu quan trọng của giải tích phức nhiều biến. Các kết quả đạt được theo hướng nghiên cứu này ngày càng nhiều và đẹp đẽ. Ngày nay nhiều nhà toán học trên thế giới vẫn tiếp tục quan tâm đến vấn đề này với những cách tiếp cận khác nhau. Lịch sử phát triển của việc nghiên cứu các hàm chỉnh hình tách vô cùng phong phú, đa dạng và đã thu được những kết quả vô cùng đẹp, có ứng dụng lớn trong giải tích hiện đại. Nó được chia làm ba giai đoạn cụ thể sau. Đầu tiên là giai đoạn từ năm 1899 đến năm 1967 với những đóng góp quan trọng của các nhà bác học nổi tiếng như: Osgood, Hartogs, Hukuhara, Shimoda, Terada… Đặc trưng chủ yếu của giai đoạn này là nghiên cứu trên chữ thập 2-lá. Trước tiên là vào năm 1899, Osgood đã khẳng định rằng nếu một hàm chỉnh hình tách giới nội trong miền D thì chỉnh hình trong miền đó. Tiếp đó là vào năm 1906, Hartogs khẳng định rằng mọi hàm chỉnh hình trong miền D đều chỉnh hình tách trong miền đó. Bước đột phá quan trọng là nghiên cứu của Hukuhara vào năm 1930. Ông đã khẳng định rằng hàm chỉnh hình tách giới nội địa phương trên tập X(A 1 ,A 2 ; D 1 ,D 2 ) là chỉnh hình trên D 1  D 2 (trong đó 1 1 2 2 ,A D A D ) với điều kiện A 2 có ít nhất một điểm tụ trong D 2 . Nhưng ở đây ông lại mở rộng vấn đề bằng câu hỏi: “Với điều kiện nào của A 2 thì khẳng định trên vẫn đúng”. Và phải đến hơn 30 năm sau Terada mới trả lời được câu hỏi trên với điều kiện A 2 là không đa cực. Giai đoạn tiếp theo là từ năm 1969 đến năm 1997 với các nghiên cứu của các nhà bác học Siciak năm 1969 và P. Zahariuta năm 1976 khi ông phát minh ra cơ sở chung của không gian Hilber. Sau đó phương pháp của Zahariuta đã được 2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn cải tiến bởi Nguyễn Thành Vân và Zeriahi trong các công trình của hai ông vào các năm 1991, 1995 và 1997. Đến năm 2001 với định lý chữ thập cổ điển của Alehyane và Zeriahi đã đưa ra công thức tổng quát cho giải tích phức. Giai đoạn thứ ba là từ năm 1998 đến năm 2001. Đặc trưng của giai đoạn này là nghiên cứu thác triển của các hàm chỉnh hình tách với kỳ dị giải tích, bắt đầu với nghiên cứu của Oktem sau đó được tổng quát hóa bởi Siciak. Kết quả tổng quát nhất là địnhthác triển của các hàm chỉnh hình tách với kỳ dị giải tích và kỳ dị đa cực của Jarnicki và Pflug. Với mục đích nghiên cứu một vài kết quả về thác triển các hàm chỉnh hình tách, luận văn gồm những nội dung cơ bản sau: Chƣơng 1. Kiến thức chuẩn bị. Nội dung chính của chương chủ yếu trình bày các khái niệm đa tạp phức, hàm đa điều hòa dưới, miền giả lồi, bao chỉnh hình, hàm cực trị tương đối, tập đa cực, đa cực địa phương, đa chính quy địa phương và hàm chỉnh hình tách, tập kỳ dị. Tiếp đó chúng tôi trình bày một số kết quả bổ trợ như thác triển các hàm chỉnh hình tách và tính chất của tập đa cực, đa cực đóng tương đối, đa chính quy địa phương để chuẩn bị cho việc trình bày chương 2. Chƣơng 2. Địnhthác triển của các hàm chỉnh hình tách với kỳ dị đa cực. Phần đầu chương chúng tôi trình bày lược các kết quả nghiên cứu về hàm chỉnh hình tách qua các giai đoạn phát triển của hướng nghiên cứu này. Tiếp đó là một định lý về thác triển của các hàm chỉnh hình tách với kỳ dị đa cực. Phần cuối chương, chúng tôi trình bày chứng minh định lý này trong trường hợp chữ thập 2-lá và trong trường hợp tổng quát. Luận văn được hoàn thành dưới sự hướng dẫn tận tình của cô giáo TS Nguyễn Thị Tuyết Mai. Em xin bày tỏ lòng biết ơn sâu sắc đối với cô. 3 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Em xin chân thành cám ơn Ban chủ nhiệm Khoa Toán Trường Đại học Sư phạm Thái Nguyên cùng các thầy cô giáo đã tận tình giảng dạy chúng em suốt khóa học. Tôi xin chân thành cảm ơn Ban giám hiệu Trường Cao đẳng Kinh tế Tài chính Thái Nguyên, Ban chủ nhiệm Khoa Khoa cơ bản và Bộ môn Toán đã quan tâm giúp đỡ và tạo mọi điều kiện thuận lợi cho tôi trong suốt quá trình học tập và nghiên cứu. Xin chân thành cảm ơn gia đình, đồng nghiệp và bạn bè đã động viên khích lệ tôi trong suốt quá trình hoàn thành, bảo vệ luận văn. 4 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn CHƢƠNG I KIẾN THỨC CHUẨN BỊ 1.1. Đa tạp phức 1.1.1. Ánh xạ chỉnh hình Giả sử X là một tập mở trong n  và :fX  là một hàm số. Hàm f được gọi là khả vi phức tại 0 xX nếu tồn tại ánh xạ tuyến tính : n   sao cho:       00 0 lim 0 h f x h f x h h       trong đó   1 , , n n h h h và 1/2 2 1 n i i hh       . Hàm f được gọi là chỉnh hình tại 0 xX nếu f khả vi phức trong một lân cận nào đó của 0 x và được gọi là chỉnh hình trên X nếu f chỉnh hình tại mọi điểm thuộc X. Một ánh xạ : m fX có thể viết dưới dạng   1 , , m f f f trong đó : , 1, , ii f f X i m     là các hàm tọa độ. Khi đó f gọi là chỉnh hình trên X nếu i f chỉnh hình trên X với mọi i=1,…,m. Ánh xạ   : n f X f X được gọi là song chỉnh hình nếu f là song ánh, chỉnh hình và 1 f  cũng là ánh xạ chỉnh hình. 5 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1.1.2. Đa tạp phức Giả sử X là một không gian tô pô Hausdorff .  Cặp   ,U  được gọi là một bản đồ địa phương của X , trong đó U là tập mở trong X và : n U    là ánh xạ, nếu các điều kiện sau được thỏa mãn: i)   U  là tập mở trong n  . ii)   :UU   là một đồng phôi.  Họ =     , ii iI U   các bản đồ địa phương của X được gọi là tập bản đồ giải tích (atlas) của X nếu các điều kiện sau được thỏa mãn: i)   i iI U  là một phủ mở của X. ii) Với mọi , ij UU mà ij UU   , ánh xạ     1 : j i i i j j i j U U U U         là ánh xạ chỉnh hình. Xét họ các atlas trên X. Hai atlas  1 , 2 được gọi là tương đương nếu hợp  1   2 là một atlas. Đây là một quan hệ tương đương trên tập các atlas. Mỗi lớp tương đương xác định một cấu trúc khả vi phức trên X và X cùng với cấu trúc khả vi phức trên nó được gọi là một đa tạp phức n chiều. 1.2. Hàm đa điều hòa dƣới 1.2.1. Hàm điều hòa dưới Giả sử D là một miền trong  . Hàm   :,uD   được gọi là điều hòa dưới trong miền D nếu u thỏa mãn hai điều kiện sau: 6 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn i) u là nửa liên tục trên trong D, tức là tập     ;z D u z s là tập mở với mỗi số thực s. ii) Với mỗi tập con mở compact tương đối G của D và mọi hàm :hX  là điều hòa trong G và liên tục trong G ta có: nếu uh trên G thì uh trên G. 1.2.2. Hàm đa điều hòa dưới Giả sử G là một tập con mở trong n  . Một hàm   :,G     được gọi là đa điều hòa dưới nếu: i)  là nửa liên tục trên và  không đồng nhất với  chỉ trên thành phần liên thông của G. ii) Với mỗi 0 zG và n a mà 0,a  và với mỗi ánh xạ :, n     0 z z az   , hàm   trên mỗi thành phần liên thông của   1 G   (là các miền trong  ) hoặc bằng  hoặc là điều hòa dưới. 1.2.3. Hàm đa điều hòa dưới trên không gian phức Giả sử X là không gian phức. Một hàm đa điều hòa dưới trên X là hàm   :,X     thoả mãn: Với mỗi xX tồn tại lân cận U mở của x sao cho với một ánh xạ song chỉnh hình :h U V lên một không gian phức con đóng V của một miền m G   nào đó và một hàm đa điều hòa dưới    :,G     sao cho  U h    . Kí hiệu    X là tập tất cả các hàm đa điều hòa dưới trên .X 1.3. Miền giả lồi Định nghĩa 1.3.1. n G   là một miền (tập con mở liên thông). Ta nói G là giả lồi nếu tồn tại một hàm đa điều hòa dưới liên tục  trên G sao cho tập 7 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn     :z G z x   là tập compact tương đối của G với mọi số thực x. Bổ đề 1.3.2. [2, tr. 73] Giả sử n D là một miền giả lồi. Khi đó tồn tại một dãy các miền giả lồi compact tương đối 1kk D D D  ÐÐ với 1k k DD     . 1.4. Bao chỉnh hình, miền chỉnh hình Định nghĩa 1.4.1. Miền  D (đơn diệp hoặc không) được gọi là bao chỉnh hình của miền n D nếu: i)  D chứa D. ii) Hàm   f H D tùy ý thác triển được thành hàm chỉnh hình trong  .D iii) Đối với điểm  0 zD tùy ý, tồn tại hàm    0 f H D mà hạn chế của nó trên đa tròn   0 ,U z r trong đó  0 ( , )r z D   không thác triển chỉnh hình được trên bất cứ một đa tròn   0 ,U z R nào, trong đó Rr . Định nghĩa 1.4.2. Miền trải   ,D  được gọi là miền chỉnh hình nếu tồn tại hàm   f H D sao cho nếu có miền     1 ,,DD   nào đó và hàm   11 f H D là  - mở rộng của hàm f thì   1 ,D  tương đương với   ,D  (tức là  là đơn trị hai chiều D lên D 1 ). 8 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1.5. Hàm cực trị tƣơng đối Định nghĩa 1.5.1. Giả sử n  và :h  được xác định bởi:     * limsup , wz h z h w w    được gọi là hàm chính quy hóa nửa liên tục trên của h. Định nghĩa 1.5.2. Giả sử n  là một tập mở và A . Đặt , : sup A h   { :uu    , 1 , 0trªn trªn u u A    } Hàm * ,A h  được gọi là hàm cực trị tương đối, trong đó kí hiệu * là chính quy hóa nửa liên tục trên. Định nghĩa 1.5.3. Ta định nghĩa: * ,, : lim kk AA k h       trong đó   1 k k    là dãy các tập mở compact tương đối, 1kk   Ð với 1kk      . Chú ý: i) Định nghĩa trên là không phụ thuộc vào dãy vét cạn   1 k k    . ii) ,A        . iii) Nếu  giới nội thì * ,,AA h    . Mệnh đề 1.5.4. (Tính chất của hàm cực trị tương đối) [2, tr. 9] Giả sử 1 n  và 2 m  là các miền và 1 1 2 2 ,AA   là các tập con bất kỳ. Khi đó:           1 2 1 2 1 1 2 2 * * * , 1 2 , 1 , 2 1 2 1 2 , max , ; , A A A A h z z h z h z z z         9 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1.6. Tập đa chính quy địa phƣơng Định nghĩa 1.6.1. Tập A là đa chính quy địa phương tại một điểm aA nếu   * , 0 A U U ha   với mọi lân cận mở U của a. Định nghĩa 1.6.2. Tập A được gọi là đa chính quy địa phương nếu nó đa chính quy địa phương tại mọi điểm aA . 1.7. Tập cực, tập đa cực Định nghĩa 1.7.1. Tập A trong n  ( 2n  ) được gọi là tập cực nếu tồn tại một hàm đa điều hòa dưới khác hằng u trên n  sao cho:     :A x u x   Định nghĩa 1.7.2. Tập A được gọi là đa cực trong  nếu tồn tại một hàm đa điều hòa dưới sao cho u không đồng nhất bằng  trên mọi thành phần liên thông của  và     :A z u z    . Định nghĩa 1.7.3. Tập A được gọi là đa cực địa phương trong  nếu với mỗi zA có một lân cận mở V của z sao cho AV là đa cực trong V. Định lý 1.7.4. (Định lý Chirka) [9, tr. 1254] Giả sử n D là một miền và  D là bao chỉnh hình của D. Giả sử rằng S là một tập con đa cực đóng tương đối của D. Khi đó tồn tại một tập con đa cực đóng tương đối  S của  D sao cho  S D S và   \DS là bao chỉnh hình của D \ S. [...]... trình bày định lý thác triển của hàm chỉnh hình tách với kỳ dị đa cực 2.2 Định lý thác triển của các hàm chỉnh hình tách với kỳ dị đa cực Định lý 2.2.1 [2, tr 67] Giả sử D j   nj là một miền giả lồi, Aj  D j là tập đa chính quy địa phương, n j  , j = 1, …, N, và U là một lân cận mở của chữ thập N-lá: X := X  A1 , , AN ; D1 , , DN  Giả sử M  U là tập con đóng tương đối của U sao cho với mỗi j... nhất một hàm   O (  ) f với   f trên X Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 35 Thời kỳ thứ ba (từ năm 1998 – 2001): Đặc trưng của thời kỳ này là định lý chữ thập với kỳ dị giải tích, bắt đầu với nghiên cứu của Ozan Oktem sau đó được tổng quát bởi Siciak Kết quả tổng quát nhất là địnhthác triển về hàm chỉnh hình tách với kỳ dị giải tích và kỳ dị đa cực của. .. mọi hàm f  Os(X\M) Do đó, theo định lý 1.9.3, q q   Y   a (r )   0  R  \ M , điều đó kéo theo M  a ,.  0  R  M  a ,. 0 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 30 CHƢƠNG 2 ĐỊNHTHÁC TRIỂN CỦA CÁC HÀM CHỈNH HÌNH TÁCH VỚI KỲ DỊ ĐA CỰC 2.1 lƣợc các kết quả nghiên cứu về thác triển của các hàm chỉnh hình tách Bài toán 2.1.1 Giả sử N  ... không là thác triển chỉnh hình trên một lân cận của a  Tập S là cực tiểu trong dãy nếu không tồn tại tập đóng tương đối S  Ø S sao cho mọi hàm thuộc F đều thác triển chỉnh hình trên  \ S Dễ thấy với mọi tập đa cực đóng tương đối S   và với mọi họ F  O   \ S  tồn tại một tập đóng tương đối S   S sao cho mọi hàm f  F thác triển thành f   O   \ S  và S  là một kỳ dị đối với họ { f... X(A,B;D,G) i) f f X Với mọi hàm f  Os ( X ) tồn tại một hàm   O (  ) với   f trên X   X ii) Nếu D và G là giả lồi thì bao chỉnh hình của X trùng với  tại X thác trển chỉnh hình cực đại của không gian các hàm chỉnh hình tách trên X Hệ quả 2.1.9 [2, tr 66] Giả sử D   n , G   m là các miền và A  D, B  G là các tập con đa chính quy địa phương Đặt X := X(A,B;D,G) f X Khi đó với mọi hàm f  Os (... đã biết của giải tích thực và nghiên cứu các hàm chỉnh hình tách trên X \M Tiếp đó, bước tiến sâu hơn trên đà phát triển của việc nghiên cứu các hàm chỉnh hình bắt đầu vào năm 1976 bởi nghiên cứu của Viacheslav P Zahariuta khi ông phát minh ra cơ sở chung của không gian Hilbert Đây là bước ngoặt lớn cho việc nghiên cứu thác triển của các hàm chỉnh hình tách Số hóa bởi Trung tâm Học liệu – Đại học Thái...  f của X) sao cho: f  Os  X \ M  ,   O  \ M :  X \ M  f X \ M ,  xác định X  f f duy nhất” Lịch sử phát triển của việc nghiên cứu các hàm chỉnh hình tách được chia làm ba thời kỳ cụ thể Thời kỳ thứ nhất (Từ 1899-1967): Điểm đặc trưng trong các kết quả nghiên cứu ở thời kỳ này là nghiên cứu thác triển của các hàm chỉnh hình tách trên tập chữ thập 2-lá Trước tiên chúng ta nhắc lại định. .. Do đó với bất kỳ a  A  a ( ), hµm   a,. thác triển chỉnh hình trên f  0    \ M  a ,.   b (   ) Theo định lý 1.9.6, tồn tại một tập đa cực đóng tương đối S  Sb   a ( )  b (   ) sao cho: 0 S   A   a0  ( )    b (   )  M  Với mọi hàm   đều thác triển chỉnh hình được thành hàm f  f O   a ( )   \ S  0 Vì      f f f nên  f thác triển chỉnh hình thành... sử D   n là một miền và D có bao chỉnh hình đơn diệp D   n Giả sử S là một tập con đa cực đóng tương đối của D Khi đó tồn tại một tập      con đa cực đóng tương đối S của D sao cho S  D  S và D \ S là bao chỉnh hình của D \ S Chứng minh  Áp dụng định lý Chirka, ta có S  D  S  Vì D là miền đơn diệp nên ta có thể giả sử D  D Hơn nữa, ta biết    rằng bao chỉnh hình của D là miền... là đa cực với A2   j 1 A2, j , trong đó A2, j là compact, j   Khi đó  f Os(X  A1 , A2 ; D1 , D2  )\ O( D1  D2 ) Thời kỳ thứ hai (Từ năm 1969 – 1997): Đặc trưng chủ yếu trong các kết quả nghiên cứu của thời kỳ này là nghiên cứu thác triển của các hàm chỉnh hình tách trong trường hợp Aj  Dj tùy ý Năm 1969, Jozef Siciak đã công bố một loạt các công trình nghiên cứu dựa trên kết quả đã biết của . trọng của các nhà bác học nổi tiếng như: Osgood, Hartogs, Hukuhara, Shimoda, Terada… Đặc trưng chủ yếu của giai đoạn này là nghiên cứu trên chữ thập 2-lá trên X với mọi i=1,…,m. Ánh xạ   : n f X f X được gọi là song chỉnh hình nếu f là song ánh, chỉnh hình và 1 f  cũng là ánh xạ chỉnh hình. 5

Ngày đăng: 23/03/2014, 19:51

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan