5 randall d knight physics for scientists and engineers a strategic approach with modern physics 08

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 5 pdf
... 87 − 6 1/ 3 1/ 3 6−2/3 + √ 2/3 87 √ + 87 , 0, − 6 1/ 3   ≈ (0 .58 9 755 , 0, 0.347 81) 1/ 3 The closest point is shown graphically in Figure 5 .10 1- 1 -0 .5 0 .5 -1 -0 .5 0 0 .5 1. 5 0 .5 Figure 5 .10 : Paraboloid, ... dx2 = (1 + 2x) x= 1 = 1 x= 1 = x= 1 (2) x= 1 =1 Then we can the integration + x + x2 dx = (x + 1) 3 1 − + (x + 1) (x + 1) x +1 1 + + ln |x + 1| =− 2(x + 1) 2 x + x + 1/ 2 + ln |x + 1| = (x + 1) 2 dx ... x3 x +1 dx = + x2 − 6x 10 Setting x = −3 yields C = − 15 + − dx 6x 10 (x − 2) 15 (x + 3) ln |x − 2| − ln |x + 3| + C = − ln |x| + 10 15 |x − 2|3 /10 = ln 1/ 6 +C |x| |x + 3|2 / 15 − Solution 4 .17 dx...
  • 40
  • 233
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps
... (−1)n ln 11 n =2 12 n =2 ∞ 13 n =2 n (n! )2 (2n)! 3n + 4n + 5n − 4n − 5 62 ∞ 14 n =2 15 n =2 ∞ 16 n=1 ∞ 17 n=1 ∞ 18 n=1 ∞ 19 n=1 ∞ 20 n =2 n! (ln n)n en ln(n!) (n! )2 (n2 )! n8 + 4n4 + 3n9 − n5 + 9n 1 ... z +2 z + 5z + 1 √ =√ + z/3 + z /2 −1 /2 z −1 /2 z = √ 1+ + + ··· 3 z 3z z z2 = √ 1− + + ··· 1− + + ··· 24 32 17 = √ − z + z2 + · · · 12 96 12. 6 1+ −1 /2 z −1 /2 + 2 z 2 + ··· Laurent Series Result 12. 6.1 ... = 2 n=−∞ C f (ζ) dζ z n ζ n+1 For the case of arbitrary z0 , simply make the transformation z → z − z0 55 7 Im(z) Im(z) r2 R2 r1 R1 C1 C2 R2 Re(z) R1 z Re(z) C Cz Figure 12. 5: Contours for...
  • 40
  • 135
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 5 pdf
... + 13 eλx = λ2 − 4λ + 13 = λ = ± 3i Thus two linearly independent solutions are e(2+3i)x , and 966 e(2−3i)x Noting that e(2+3i)x = e2x [cos(3x) + ı sin(3x)] e(2−3i)x = e2x [cos(3x) − ı sin(3x)], ... an exact equation d 3 ex /3 y = c1 ex /3 dx ex /3 ex y = c1 y = c1 e−x /3 ex /3 /3 9 45 dx + c2 dx + c2 e−x /3 Result 17 .3. 1 If you can write a differential equation in the form d F (x, y, y , ... = The linearly independent solutions are x2+ 3 , x2− 3 We can put this in a more understandable form x2+ 3 = x2 e 3 ln x = x2 cos (3 ln x) + x2 sin (3 ln x) We can write the general solution in...
  • 40
  • 178
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf
... not a good approximation 13 54 0 .5 -1 0 .4 0.2 -0 .5 0 .5 -1 -0 .5 0 .5 -0 .5 -0.2 -1 -0 .4 Figure 28.7: Three Term Approximation for a Function with Jump Discontinuities and a Continuous Function A ... -1 0 .5 -0 .5 0 .5 1 .5 -1 -0 .5 0 .5 -0 .5 -0 .5 -1 1 .5 -1 Figure 28.3: A Function Defined on the range −1 ≤ x < and the Function to which the Fourier Series Converges bn = = = 3/2 3 f (x) sin −1 5/ 2 ... + for − < x < −1/2 for − 1/2 < x < 1/2 for 1/2 < x < 1 355 0 .5 0.2 0.1 -1 -0 .5 0 .5 0. 25 0.1 -0.1 -0.2 0.1 Figure 28.8: Three Term Approximation for a Function with Continuous First Derivative and...
  • 40
  • 83
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 1 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 1 pdf
... 32 .10 Hint 32 .11 The left side is the convolution of u(x) and e−ax Hint 32 .12 Hint 32 .13 Hint 32 .14 Hint 32. 15 Hint 32 .16 Hint 32 .17 Hint 32 .18 Hint 32 .19 Hint 32.20 15 7 9 Hint 32. 21 15 8 0 32 .11 ... integral 1 (1 − τ )n τ z τz − −n (1 − τ )n 1 dτ z z 0 n (1 − τ )n 1 τ z dτ = z n(n − 1) = (1 − τ )n−2 τ z +1 dτ z(z + 1) n(n − 1) · · · (1) τ z+n 1 dτ = z(z + 1) · · · (z + n − 1) (1 − τ )n τ z 1 dτ ... factor = 1 2z 3z · · · (n + 1) z lim z n→∞ (1 + z) (1 + z/2) · · · (1 + z/n) 1z 2z · · · nz ∞ 1 (n + 1) z = z n =1 + z/n nz Thus we have Gauss’ formula for the Gamma function ∞ Γ(z) = z n =1 1+ n z 1+ z...
  • 40
  • 153
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 2 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 2 docx
... 15 25 35 45 Γ(n) 24 8.71783 · 1010 6 .20 448 · 1 023 2. 9 52 33 · 1038 2. 658 27 · 1 054 2 xx−1 /2 e−x relative error 23 .6038 0.01 65 8.66 954 · 1010 0.0 055 6.18384 · 1 023 0.0033 2. 9 453 1 · 1038 0.0 024 54 ... 2 4···n·(2n 2) ···(2n−n) ζ n+1 2( 2n 2) 2 4·(2n 2) (2n−4) cn (ζ) = ζ4 ζ n−1  2n−1 n! + ζ + + · · · + 2 4···(n−1)·(2n 2) ···(2n−(n−1)) ζ n+1 2( 2n 2) 2 4·(2n 2) (2n−4) 16 42 for even n for odd n Uniform Convergence ... J1 /2 (z) z 1 /2 1 /2 = z −1 /2 sin z − − z π J3 /2 (z) = π 1 /2 z −3 /2 sin z − π 1 /2 z −1 /2 cos z = 2 1 /2 π −1 /2 z −3 /2 sin z + 2 1 /2 π −1 /2 z −3 /2 sin z − 2 1 /2 π −1 /2 cos z π 1 /2 = π 1 /2 = z −3/2...
  • 40
  • 122
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 3 potx

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 3 potx
... Hint 34 .9 Hint 34 .10 1 655 Hint 34 .11 Hint 34 .12 Hint 34 . 13 Hint 34 .14 1 656 34 .10 Solutions Solution 34 .1 Bessel’s equation is L[y] ≡ z y + zy + z − n2 y = We consider a solution of the form e ... Hint, Solution 1682 z = r cos φ 35 . 2 Hints Hint 35 . 1 Hint 35 . 2 16 83 35 . 3 Solutions Solution 35 . 1 h1 = (cos θ)2 + (sin θ)2 + = h2 = (−r sin θ)2 + (r cos θ)2 + = r h3 = u= r √ ∂ ∂r + + 12 = ∂u ∂ ... ∂ 3 h3 ∂ 3 u= h1 h2 h3 ∂ u= h1 h2 h3 ∂ξ1 ·v = 1681 35 . 1 Exercises Exercise 35 . 1 Find the Laplacian in cylindrical coordinates (r, θ, z) x = r cos θ, y = r sin θ, z Hint, Solution Exercise 35 . 2...
  • 40
  • 162
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 4 ppt

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 4 ppt
... φ(x, 0) = for < x < l, with boundary conditions φ(0, t) = for t > 0, and φ(l, t) + φx (l, t) = for t > Obtain two series solutions for this problem, one which is useful for large t and the other ... Solution 1696 36 .4 Hints Hint 36.1 Hint 36.2 Hint 36.3 1697 36 .5 Solutions Solution 36.1 For y = −1, the equation is parabolic For this case it is already in the canonical form, uxx = For y = −1, ... σ and τ σx = σy = 2y τx = 2x τy = Then we calculate the derivatives of u ux = 2xuτ uy = 2yuσ uxx = 4x2 uτ τ + 2uτ uyy = 4y uσσ + 2uσ Finally we transform the equation to canonical form σ (4 ...
  • 40
  • 165
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 5 ppt

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 5 ppt
... exponentially decaying Hint 37.22 For parts (a), (b) and (c) use separation of variables For part (b) the eigen-solutions will involve Bessel functions For part (c) the eigen-solutions will involve ... boundary value problems for X(x) and Y (y) and a differential equation for T (t) X + µX = 0, X (0) = X (1) = Y + (λ − µ)Y = 0, Y (0) = Y (1) = T = −λνT The solutions for X(x) form a cosine series ... solution of the partial differential equation and is thus twice continuously differentiable, (u ∈ C ) In particular, this implies that R and Θ are bounded and that Θ is continuous and has a continuous...
  • 40
  • 132
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 6 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 6 pps
... solution for R(r) is Rn = j0 (λr) Applying the boundary condition at r = a, we see that the eigenvalues and eigenfunctions are λn = γn , a Rn = j0 γn r , a The problem for T becomes Tn = −κ 17 85 γn ... dx for d = nπξ L for d = L , 2n L 2n The solution for u(x, t) is, 8dL2 v u(x, t) = π2c u(x, t) = v π2c ∞ n=1 ∞ n=1 n2 n(L2 cos − 4d2 n2 ) 2nπd + L sin 2nπd L sin nπξ L sin nπx sin L nπct L for ... partial differential equation, we will expand the solution in a series of eigenfunctions in x for which the coefficients are functions of t The solution for u has the form, ∞ u(x, t) = un (t) sin n=1 nπx...
  • 40
  • 163
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 7 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 7 docx
... , a2 = k , cρ (39.2) so that it is valid for diffusion in a non-homogeneous medium for which c and k are functions of x and φ and so that it is valid for a geometry in which A is a function of ... not uniformly convergent and we are not allowed to differentiate it with respect to x We substitute the expansion into the partial 18 27 differential equation, multiply by the eigenfunction and integrate ... temperature and A is the cross-sectional area 1833 39.2 Hints Hint 39.1 Hint 39.2 Hint 39.3 Hint 39.4 Hint 39 .5 Check that the expression for w(x, t) satisfies the partial differential equation and initial...
  • 40
  • 135
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 8 doc

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 8 doc
... was correct 18 75 Direct Solution D’Alembert’s solution is valid for all x and t We formally substitute t − T for t in this solution to solve the problem with deflection u(x, T ) = φ(x) and velocity ... determine α(ξ) and β(ξ) for ξ > Then use the initial condition to determine β(ξ) for ξ < Hint 41.6 Hint 41.7 a) Substitute u(x, t) = (A eıωt−αx ) into the partial differential equation and solve for α ... solution to solve this problem ∞ u(x, t) = H n=−∞ − x − − 8n − t 2 +H +H − x − − 8n + t 2 13 − x− − 8n − t 2 186 9 +H 13 − x− − 8n + t 2 The solution for several times is plotted in Figure 41.2 Note that...
  • 40
  • 120
  • 0

Xem thêm

Từ khóa: advanced mathematical methods for scientists and engineers pdfmathematical methods for scientists and engineers mcquarrie pdfmathematical methods for scientists and engineers pdfadvanced mathematical methods for scientists and engineers bender pdfadvanced mathematical methods for scientists and engineers pdf downloadpartial differential equations for scientists and engineers pdf farlowpartial differential equations for scientists and engineers stanley j farlow pdf downloadpartial differential equations for scientists and engineers farlow solutions manual pdfpartial differential equations for scientists and engineers stanley j farlow pdfpartial differential equations for scientists and engineers farlow pdf downloadpartial differential equations for scientists and engineers farlow pdf free downloadadvanced mathematical methods for scientists and engineers solutions manualadvanced mathematical methods for scientists and engineers djvuadvanced mathematical methods for scientists and engineers downloadadvanced mathematical methods for scientists and engineersTìm hiểu về bài toán ổn định và ổn định hóa cho lớp hệ điều khiển tuyến tính với thời gian rời rạc (LV tốt nghiệp)BT hóa phân tích BKHN phần Phức chất (có đáp án)Ứng dụng công nghệ GIS và viễn thám đánh giá xói mòn đất trên địa bàn huyện Phú Lương, tỉnh Thái Nguyên (LV thạc sĩ)Vận dụng phương pháp nêu vấn đề và sử dụng tình huống trong dạy học lý luận chính trị tại Trung tâm bồi dưỡng chính trị huyện Vũ Thư, tỉnh Thái Bình (LV thạc sĩ)Nâng cao năng lực cạnh tranh của Ngân hàng TMCP Đông Nam Á Chi nhánh Thái Nguyên (LV thạc sĩ)Tăng cường quản lý kê khai thuế trên địa bàn huyện Tam Đảo tỉnh Vĩnh Phúc (LV thạc sĩ)Hoàn thiện công tác quản lý đầu tư tỉnh Bắc Kạn giai đoạn 2016 2020 (LV thạc sĩ)Kinh tế nông nghiệp Châu Văn Lãng, tỉnh Thái Nguyên nửa đầu thế kỷ XIX (LV thạc sĩ)Nâng cao chất lượng nguồn nhân lực tại Cục thống kê tỉnh Phú Thọ (LV thạc sĩ)Nâng cao năng lực cạnh tranh của Ngân hàng TMCP Đông Nam Á Chi nhánh Thái Nguyên (LV thạc sĩ)Cuộc vận động xây dựng đời sống văn hóa ở khu dân cư thành phố Cẩm Phả tỉnh Quảng Ninh (2001 2015) (LV thạc sĩ)Hiệu quả sản xuất nghề mây tre đan tại các làng nghề xã Tiên Phong, thị xã Phổ Yên, tỉnh Thái Nguyên (LV thạc sĩ)XÂY DỰNG HỆ THỐNG TRÒ CHƠI PHÁT TRIỂN HÀNH ĐỘNG TRI GIÁC CHO TRẺ 3-4 TUỔIQuản lý dạy học theo quan điểm dạy học phân hóa ở trường trung học cơ sở trưng vương, uông bí, quảng ninhhiệu ứng plasmon bề mặt, quá trình tạo hạt nano bạcVăn học dân gian dân tộc thái ở mai châuKết quả điều trị sỏi niệu quản bằng phẫu thuật nội soi ngược dòng tán sỏi với nguồn năng lượng laser holmium tại bệnh viện đa khoa trung ương thái nguyênĐánh giá hiệu quả sử dụng đất nông nghiệp và đề xuất hướng sử dụng đất phù hợp tại huyện yên minh, tỉnh hà giangRèn luyện kĩ năng sử dụng sách giáo khoa cho học sinh trong dạy học chương dòng điện xoay chiều vật lí 12 với sự hỗ trợ của một số kĩ thuật dạy học tích cựcLearning guides in speaking english in in class and out of class activities for vietnamese freshman students in the thai nguyen university system
Nạp tiền Tải lên
Đăng ký
Đăng nhập