5 randall d knight physics for scientists and engineers a strategic approach with modern physics 05

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 5 pdf
... 87 − 6 1/ 3 1/ 3 6−2/3 + √ 2/3 87 √ + 87 , 0, − 6 1/ 3   ≈ (0 .58 9 755 , 0, 0.347 81) 1/ 3 The closest point is shown graphically in Figure 5 .10 1- 1 -0 .5 0 .5 -1 -0 .5 0 0 .5 1. 5 0 .5 Figure 5 .10 : Paraboloid, ... dx2 = (1 + 2x) x= 1 = 1 x= 1 = x= 1 (2) x= 1 =1 Then we can the integration + x + x2 dx = (x + 1) 3 1 − + (x + 1) (x + 1) x +1 1 + + ln |x + 1| =− 2(x + 1) 2 x + x + 1/ 2 + ln |x + 1| = (x + 1) 2 dx ... x3 x +1 dx = + x2 − 6x 10 Setting x = −3 yields C = − 15 + − dx 6x 10 (x − 2) 15 (x + 3) ln |x − 2| − ln |x + 3| + C = − ln |x| + 10 15 |x − 2|3 /10 = ln 1/ 6 +C |x| |x + 3|2 / 15 − Solution 4 .17 dx...
  • 40
  • 226
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps
... (−1)n ln 11 n =2 12 n =2 ∞ 13 n =2 n (n! )2 (2n)! 3n + 4n + 5n − 4n − 5 62 ∞ 14 n =2 15 n =2 ∞ 16 n=1 ∞ 17 n=1 ∞ 18 n=1 ∞ 19 n=1 ∞ 20 n =2 n! (ln n)n en ln(n!) (n! )2 (n2 )! n8 + 4n4 + 3n9 − n5 + 9n 1 ... z +2 z + 5z + 1 √ =√ + z/3 + z /2 −1 /2 z −1 /2 z = √ 1+ + + ··· 3 z 3z z z2 = √ 1− + + ··· 1− + + ··· 24 32 17 = √ − z + z2 + · · · 12 96 12. 6 1+ −1 /2 z −1 /2 + 2 z 2 + ··· Laurent Series Result 12. 6.1 ... = 2 n=−∞ C f (ζ) dζ z n ζ n+1 For the case of arbitrary z0 , simply make the transformation z → z − z0 55 7 Im(z) Im(z) r2 R2 r1 R1 C1 C2 R2 Re(z) R1 z Re(z) C Cz Figure 12. 5: Contours for...
  • 40
  • 132
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 5 pdf
... + 13 eλx = λ2 − 4λ + 13 = λ = ± 3i Thus two linearly independent solutions are e(2+3i)x , and 966 e(2−3i)x Noting that e(2+3i)x = e2x [cos(3x) + ı sin(3x)] e(2−3i)x = e2x [cos(3x) − ı sin(3x)], ... an exact equation d 3 ex /3 y = c1 ex /3 dx ex /3 ex y = c1 y = c1 e−x /3 ex /3 /3 9 45 dx + c2 dx + c2 e−x /3 Result 17 .3. 1 If you can write a differential equation in the form d F (x, y, y , ... = The linearly independent solutions are x2+ 3 , x2− 3 We can put this in a more understandable form x2+ 3 = x2 e 3 ln x = x2 cos (3 ln x) + x2 sin (3 ln x) We can write the general solution in...
  • 40
  • 167
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf
... not a good approximation 13 54 0 .5 -1 0 .4 0.2 -0 .5 0 .5 -1 -0 .5 0 .5 -0 .5 -0.2 -1 -0 .4 Figure 28.7: Three Term Approximation for a Function with Jump Discontinuities and a Continuous Function A ... -1 0 .5 -0 .5 0 .5 1 .5 -1 -0 .5 0 .5 -0 .5 -0 .5 -1 1 .5 -1 Figure 28.3: A Function Defined on the range −1 ≤ x < and the Function to which the Fourier Series Converges bn = = = 3/2 3 f (x) sin −1 5/ 2 ... + for − < x < −1/2 for − 1/2 < x < 1/2 for 1/2 < x < 1 355 0 .5 0.2 0.1 -1 -0 .5 0 .5 0. 25 0.1 -0.1 -0.2 0.1 Figure 28.8: Three Term Approximation for a Function with Continuous First Derivative and...
  • 40
  • 77
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 1 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 1 pdf
... 32 .10 Hint 32 .11 The left side is the convolution of u(x) and e−ax Hint 32 .12 Hint 32 .13 Hint 32 .14 Hint 32. 15 Hint 32 .16 Hint 32 .17 Hint 32 .18 Hint 32 .19 Hint 32.20 15 7 9 Hint 32. 21 15 8 0 32 .11 ... integral 1 (1 − τ )n τ z τz − −n (1 − τ )n 1 dτ z z 0 n (1 − τ )n 1 τ z dτ = z n(n − 1) = (1 − τ )n−2 τ z +1 dτ z(z + 1) n(n − 1) · · · (1) τ z+n 1 dτ = z(z + 1) · · · (z + n − 1) (1 − τ )n τ z 1 dτ ... factor = 1 2z 3z · · · (n + 1) z lim z n→∞ (1 + z) (1 + z/2) · · · (1 + z/n) 1z 2z · · · nz ∞ 1 (n + 1) z = z n =1 + z/n nz Thus we have Gauss’ formula for the Gamma function ∞ Γ(z) = z n =1 1+ n z 1+ z...
  • 40
  • 142
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 2 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 2 docx
... 15 25 35 45 Γ(n) 24 8.71783 · 1010 6 .20 448 · 1 023 2. 9 52 33 · 1038 2. 658 27 · 1 054 2 xx−1 /2 e−x relative error 23 .6038 0.01 65 8.66 954 · 1010 0.0 055 6.18384 · 1 023 0.0033 2. 9 453 1 · 1038 0.0 024 54 ... 2 4···n·(2n 2) ···(2n−n) ζ n+1 2( 2n 2) 2 4·(2n 2) (2n−4) cn (ζ) = ζ4 ζ n−1  2n−1 n! + ζ + + · · · + 2 4···(n−1)·(2n 2) ···(2n−(n−1)) ζ n+1 2( 2n 2) 2 4·(2n 2) (2n−4) 16 42 for even n for odd n Uniform Convergence ... J1 /2 (z) z 1 /2 1 /2 = z −1 /2 sin z − − z π J3 /2 (z) = π 1 /2 z −3 /2 sin z − π 1 /2 z −1 /2 cos z = 2 1 /2 π −1 /2 z −3 /2 sin z + 2 1 /2 π −1 /2 z −3 /2 sin z − 2 1 /2 π −1 /2 cos z π 1 /2 = π 1 /2 = z −3/2...
  • 40
  • 120
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 3 potx

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 3 potx
... Hint 34 .9 Hint 34 .10 1 655 Hint 34 .11 Hint 34 .12 Hint 34 . 13 Hint 34 .14 1 656 34 .10 Solutions Solution 34 .1 Bessel’s equation is L[y] ≡ z y + zy + z − n2 y = We consider a solution of the form e ... Hint, Solution 1682 z = r cos φ 35 . 2 Hints Hint 35 . 1 Hint 35 . 2 16 83 35 . 3 Solutions Solution 35 . 1 h1 = (cos θ)2 + (sin θ)2 + = h2 = (−r sin θ)2 + (r cos θ)2 + = r h3 = u= r √ ∂ ∂r + + 12 = ∂u ∂ ... ∂ 3 h3 ∂ 3 u= h1 h2 h3 ∂ u= h1 h2 h3 ∂ξ1 ·v = 1681 35 . 1 Exercises Exercise 35 . 1 Find the Laplacian in cylindrical coordinates (r, θ, z) x = r cos θ, y = r sin θ, z Hint, Solution Exercise 35 . 2...
  • 40
  • 147
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 4 ppt

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 4 ppt
... φ(x, 0) = for < x < l, with boundary conditions φ(0, t) = for t > 0, and φ(l, t) + φx (l, t) = for t > Obtain two series solutions for this problem, one which is useful for large t and the other ... Solution 1696 36 .4 Hints Hint 36.1 Hint 36.2 Hint 36.3 1697 36 .5 Solutions Solution 36.1 For y = −1, the equation is parabolic For this case it is already in the canonical form, uxx = For y = −1, ... σ and τ σx = σy = 2y τx = 2x τy = Then we calculate the derivatives of u ux = 2xuτ uy = 2yuσ uxx = 4x2 uτ τ + 2uτ uyy = 4y uσσ + 2uσ Finally we transform the equation to canonical form σ (4 ...
  • 40
  • 157
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 5 ppt

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 5 ppt
... exponentially decaying Hint 37.22 For parts (a), (b) and (c) use separation of variables For part (b) the eigen-solutions will involve Bessel functions For part (c) the eigen-solutions will involve ... boundary value problems for X(x) and Y (y) and a differential equation for T (t) X + µX = 0, X (0) = X (1) = Y + (λ − µ)Y = 0, Y (0) = Y (1) = T = −λνT The solutions for X(x) form a cosine series ... solution of the partial differential equation and is thus twice continuously differentiable, (u ∈ C ) In particular, this implies that R and Θ are bounded and that Θ is continuous and has a continuous...
  • 40
  • 124
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 6 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 6 pps
... solution for R(r) is Rn = j0 (λr) Applying the boundary condition at r = a, we see that the eigenvalues and eigenfunctions are λn = γn , a Rn = j0 γn r , a The problem for T becomes Tn = −κ 17 85 γn ... dx for d = nπξ L for d = L , 2n L 2n The solution for u(x, t) is, 8dL2 v u(x, t) = π2c u(x, t) = v π2c ∞ n=1 ∞ n=1 n2 n(L2 cos − 4d2 n2 ) 2nπd + L sin 2nπd L sin nπξ L sin nπx sin L nπct L for ... partial differential equation, we will expand the solution in a series of eigenfunctions in x for which the coefficients are functions of t The solution for u has the form, ∞ u(x, t) = un (t) sin n=1 nπx...
  • 40
  • 156
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 7 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 7 docx
... , a2 = k , cρ (39.2) so that it is valid for diffusion in a non-homogeneous medium for which c and k are functions of x and φ and so that it is valid for a geometry in which A is a function of ... not uniformly convergent and we are not allowed to differentiate it with respect to x We substitute the expansion into the partial 18 27 differential equation, multiply by the eigenfunction and integrate ... temperature and A is the cross-sectional area 1833 39.2 Hints Hint 39.1 Hint 39.2 Hint 39.3 Hint 39.4 Hint 39 .5 Check that the expression for w(x, t) satisfies the partial differential equation and initial...
  • 40
  • 127
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 8 doc

Advanced Mathematical Methods for Scientists and Engineers Episode 5 Part 8 doc
... was correct 18 75 Direct Solution D’Alembert’s solution is valid for all x and t We formally substitute t − T for t in this solution to solve the problem with deflection u(x, T ) = φ(x) and velocity ... determine α(ξ) and β(ξ) for ξ > Then use the initial condition to determine β(ξ) for ξ < Hint 41.6 Hint 41.7 a) Substitute u(x, t) = (A eıωt−αx ) into the partial differential equation and solve for α ... solution to solve this problem ∞ u(x, t) = H n=−∞ − x − − 8n − t 2 +H +H − x − − 8n + t 2 13 − x− − 8n − t 2 186 9 +H 13 − x− − 8n + t 2 The solution for several times is plotted in Figure 41.2 Note that...
  • 40
  • 111
  • 0

Xem thêm

Từ khóa: advanced mathematical methods for scientists and engineers pdfmathematical methods for scientists and engineers mcquarrie pdfmathematical methods for scientists and engineers pdfadvanced mathematical methods for scientists and engineers bender pdfadvanced mathematical methods for scientists and engineers pdf downloadpartial differential equations for scientists and engineers pdf farlowpartial differential equations for scientists and engineers stanley j farlow pdf downloadpartial differential equations for scientists and engineers farlow solutions manual pdfpartial differential equations for scientists and engineers stanley j farlow pdfpartial differential equations for scientists and engineers farlow pdf downloadpartial differential equations for scientists and engineers farlow pdf free downloadadvanced mathematical methods for scientists and engineers solutions manualadvanced mathematical methods for scientists and engineers djvuadvanced mathematical methods for scientists and engineers downloadadvanced mathematical methods for scientists and engineersPhân Tích Các Cơ Sở Pháp Lý Để Các Tổ Chức Tín Dụng Chuyển Ngoại Tệ Ra Nước Ngoài Và Những Vấn Đề Pháp Lý Phát SinhThực trạng hoạt động nhập khẩu của Công ty Dệt Vải Công Nghiệp Hà NộiBài Giảng Môi Trường Trong Xây DựngNâng cao năng lực cạnh tranh của khu nghỉ mát Sun Spa & Resort Quảng BìnhThực trạng hoạt động xuất khẩu hàng hoá ở Công ty xuất nhập khẩu tổng hợp và chuyển giao công nghệ Việt Nam trong những năm quaThực trạng và Một số giải pháp nhằm hoàn thiện công tác thẩm định dự án đầu tư sử dụng vốn ngân sách Nhà nước tại Vụ Thẩm định và Giám sát đầu tư Bộ Kế hoạch và Đầu tưbài tập lớn vi mạch thiết kế đo nhiệt độ và tần sốKỷ luật lao động và trách nhiệm kỷ luật lao động trong pháp luật việt namPháp luật việt nam về sinh con bằng kỹ thuật thụ tinh trong ống nghiệmNghĩa vụ cấp dưỡng theo luật hôn nhân và gia đình năm 2014Quyền tự do khởi kiện vụ án dân sự theo pháp luật việt namĐánh giá phát triển bền vững làng nghề truyền thống thuộc xã tam hiệp, huyện phúc thọ, thành phố hà nộiNghiên cứu đặc tính điện hóa của fenofibrat và ứng dụng trong phân tíchCác nhân tố ảnh hưởng đến quản lý rủi ro đối với hàng hóa xuất khẩu, nhập khẩu tại cục hải quan tỉnh bình địnhNâng cao năng lực cạnh tranh của cụm ngành du lịch tỉnh bình địnhNăng lực lãnh đạo cấp cao tác động đến kết quả thực hiện công tác quản lý chất lượng toàn diện công trình xây dựngHoàn thiện công tác quản lý thuế thu nhập doanh nghiệp đối với khu vực ngoài quốc doanh trên địa bàn tỉnh Quảng Ninh.Xây dựng chiến lược kinh doanh cho Công ty cổ phần tư vấn công nghệ giai đoạn 2012 - 2017Nghiên cứu giải pháp nâng cao năng lực cạnh tranh của sản phẩm nước uống tinh khiết đóng chai Bwaco của Công ty cổ phần cấp nước Bà Rịa - Vũng Tàu tại Thành phố Vũng TàuMột số giải pháp nhằm nâng cao năng lực cạnh tranh của Công Ty TNHH SX-TM hóa mỹ phẩm Mỹ Hảo.
Nạp tiền Tải lên
Đăng ký
Đăng nhập