4 randall d knight physics for scientists and engineers a strategic approach with modern physics 12

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 4 pptx

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 4 pptx
... approximate sin (1) , 13 15 1 + ≈ 0.8 41 6 67 12 0 10 7 To see that this has the required accuracy, sin (1) ≈ 0.8 41 4 71 Solution 3 .19 Expanding the terms in the approximation in Taylor series, ∆x3 ∆x4 ∆x2 f ... Example 4. 4 .1 Consider the partial fraction expansion of + x + x2 (x − 1) 3 The expansion has the form a0 a1 a2 + + (x − 1) (x − 1) x 1 127 The coefficients are (1 + x + x2 )|x =1 = 3, 0! d a1 = (1 + ... − x→0 10 9 x =0 c ln lim x→+∞ 1+ x x = lim x→+∞ = lim x→+∞ = lim x→+∞ = lim ln + 1/ x 1+ x→+∞ 1+ =1 Thus we have lim x→+∞ 1+ 11 0 x x 1 x − x2 1/ x2 x→+∞ = lim x ln 1+ x x ln + x x = e x 1 d It...
  • 40
  • 150
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx
... continuously deformed to C2 on the domain where the integrand is analytic Thus the integrals have the same value 5 14 -4 -2 -2 -4 Figure 11 .2: The contours and the singularities of 3z +1 -6 -4 -2 -2 -4 -6 ... , C2 and C2 C z dz = z3 − C1 z− + √ C2 z− C3 z− + = 2 + 2 + 2 z− √ √ √ z− z− z √ dz e 2 /3 z − e− 2 /3 z √ √ dz 2 /3 z − 9e z − e− 2 /3 z √ √ dz z − e 2 /3 z − e− 2 /3 z− 9 √ z e 2 /3 ... deform C onto C1 and C2 = C + C1 520 C2 -4 C1 C2 -2 C -2 -4 Figure 11.5: The contours for (z +z+ı) sin z z +ız We use the Cauchy Integral Formula to evaluate the integrals along C1 and C2 ...
  • 40
  • 143
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 4 pot

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 4 pot
... 4x3 To check the theorem, d x x2 d ∆[A(x)] = dx dx x2 x4 2x x x2 = + 2x 4x3 x x = x4 − 2x3 + 4x4 − 2x3 = 5x4 − 4x3 16 .4. 2 The Wronskian of a Set of Functions A set of functions {y1 , y2 , ... Example 16 .4. 1 Consider the the matrix A(x) = x x2 x2 x4 The determinant is x5 − x4 thus the derivative of the determinant is 5x4 − 4x3 To check the theorem, d x x2 d ∆[A(x)] = dx dx x2 x4 2x x ... [¯] = y 9 03 For the same reason, if yp is a particular solution, then yp is a particular solution as well Since the real and imaginary parts of a function y are linear combinations of y and y ,...
  • 40
  • 148
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 1 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 1 docx
... differential equation as ∞ w = c1 z 3 /4 1+ n =1 n 16 ∞ zn n!(n + 1) ! + c2 z 1 /4 n =1 ∞ c1 z 3 /4 + c2 z 1 /4 1+ n =1 23.2 .1 1+ 16 n 16 n zn n!(n + 1) ! zn n!(n + 1) ! Indicial Equation Now let’s ... c2 = (1 − c1 r1 ) r2 We substitute this into the second equation (1 − c1 r1 )r2 = r2 c1 (r1 − r1 r2 ) = − r2 c r1 + 11 81 n c1 = = = − r2 − r1 r2 r1 √ 1 √ √ 1+ 5 √ 1+ √ √ 1+ 5 1 =√ Substitute ... 31 an = 2(n 1) /2 (n − 2)(n − 4) · · · (1) For the even terms, a2 = a4 = 22 a6 = 42 an = 2(n−2)/2 (n − 2)(n − 4) · · · (2) Thus an = 2(n 1) /2 (n−2)(n 4) ··· (1) 2(n−2)/2 (n−2)(n 4) ···(2) 11 83 for...
  • 40
  • 109
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 2 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 2 pps
... + x + x2 /2 + O(x3 ))(x + a2 x2 + a3 x3 + O(x4 )) = (2a2 x + 6a3 x2 ) + (2x + 4a2 x2 ) + (6x + 6(1 + a2 )x2 ) = O(x3 ) = 17 a2 = 4, a3 = 17 y1 = x − 4x2 + x3 + O(x4 ) Now we see if the second ... yields z= t dz = − dt t d d = −t2 dz dt w + d2 d d = −t2 −t2 dz dt dt d d = t4 + 2t3 dt dt 1 24 0 The equation for u is then t4 u + 2t3 u + (2t + 3t2 )(−t2 )u + t2 u = u + −3u + u = t We see that ... − a0 (2n)(2n − 2) · · · · a0 = (−1)n n , n≥0 m=1 2m = (−1)n a2n−1 2n + a2n−3 = (2n + 1)(2n − 1) a2n+1 = − a1 (2n + 1)(2n − 1) · · · · a1 = (−1)n n , n≥0 m=1 (2m + 1) = (−1)n If {w1 , w2 } is...
  • 40
  • 70
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 3 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 3 pdf
... 10−29 4. 14 × 10 37 2.09 × 10 45 One Term Relative Error 0 .32 03 0.1 044 0.0507 0.0296 0.0192 0.0 135 0.0100 0.0077 0.0061 0.0 049 Three Term Relative Error 0. 649 7 0.0182 0.0020 3. 9 · 10 4 1.1 · 10 4 3. 7 ... = x 3x2 − P2 (x) = 5x − 3x P3 (x) = 35 x4 − 30 x2 + P4 (x) = Expanding cos(πx) in Legendre polynomials cos(πx) ≈ cn Pn (x), n=0 and calculating the generalized Fourier coefficients with the formula ... even for fairly small values of x 24. 3 Integration by Parts Example 24. 3. 1 The complementary error function erfc(x) = √ π 12 63 ∞ e−t dt x 1.75 1.5 1.25 0.75 0.5 0.25 Figure 24. 1: Plot of K0 (x) and...
  • 40
  • 122
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 4 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 4 docx
... the eigenvalues as λn and the eigenfunctions as φn for n ∈ Z+ For the moment we assume that λ = is not an eigenvalue and that the eigenfunctions are real-valued We expand the function f (x) ... compute the eigenvalues However, we can often use the formula to obtain information about the eigenvalues before we solve a problem Example 27 .4. 2 Consider the self-adjoint eigenvalue problem −y ... equation formally self-adjoint xy + y + xy = d (xy ) + xy = dx Result 27.2.1 If L = L∗ then the linear operator L is formally self-adjoint Second order formally self-adjoint operators have the form...
  • 40
  • 125
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf
... not a good approximation 13 54 0 .5 -1 0 .4 0.2 -0 .5 0 .5 -1 -0 .5 0 .5 -0 .5 -0.2 -1 -0 .4 Figure 28.7: Three Term Approximation for a Function with Jump Discontinuities and a Continuous Function A ... -1 0 .5 -0 .5 0 .5 1 .5 -1 -0 .5 0 .5 -0 .5 -0 .5 -1 1 .5 -1 Figure 28.3: A Function Defined on the range −1 ≤ x < and the Function to which the Fourier Series Converges bn = = = 3/2 3 f (x) sin −1 5/ 2 ... + for − < x < −1/2 for − 1/2 < x < 1/2 for 1/2 < x < 1 355 0 .5 0.2 0.1 -1 -0 .5 0 .5 0. 25 0.1 -0.1 -0.2 0.1 Figure 28.8: Three Term Approximation for a Function with Continuous First Derivative and...
  • 40
  • 70
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 6 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 6 pps
... Parseval’s theorem for this series to find the value of ∞ 16 n=1 π 1 = n6 π −π ∞ 16 n=1 ∞ n=1 x3 π − x 3 16 = n6 945 6 = n6 945 13 76 ∞ n=1 n6 dx Solution 28.2 We differentiate the partial sum of ... 16 = n4 π n=1 ∞ π x4 dx −π 2π 2π + 16 = n4 n=1 ∞ n=1 4 = n4 90 1375 Now we integrate the series for f (x) = x2 x ξ2 − ∞ π2 3 dξ = n=1 ∞ (−1)n n2 x cos(nξ) dξ x π (−1)n − x =4 sin(nx) 3 n3 n=1 ... = π 4( −1)n = n2 a0 = Thus the Fourier series is ∞ π2 (−1)n x = +4 cos(nx) for x ∈ (−π π) n2 n=1 ∞ n=1 n4 We apply Parseval’s theorem for this series to find the value of ∞ 2π 1 + 16 = n4 π...
  • 40
  • 145
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 7 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 7 docx
... eigenvalues and eigenfunctions for: d4 φ = λφ, dx4 φ(0) = φ (0) = 0, φ(1) = φ (1) = Hint, Solution 144 2 29.5 Hints Hint 29.1 Hint 29.2 Hint 29.3 Hint 29 .4 Write the problem in Sturm-Liouville form to ... = 0, λ = 1 /4 is not an eigenvalue 144 9 Now consider the case λ = 1 /4 A set of solutions is √ (x + 1)(1+ 1 4 )/2 , (x + 1)(1− √ 1 4 )/2 We can write this in terms of the exponential and the logarithm ... p0 y = µy, for a ≤ x ≤ b, α1 y(a) + α2 y (a) = 0, β1 y(b) + β2 y (b) = 0, where the pj are real and continuous and p2 > on [a, b], and the αj and βj are real can be written in the form of a regular...
  • 40
  • 131
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 8 potx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 8 potx
... s 146 8 From part (a) we know that there are only positive eigenvalues The general solution of the differential equation is φ = c1 cos(λ1 /4 x) + c2 cosh(λ1 /4 x) + c3 sin(λ1 /4 x) + c4 sinh(λ1 /4 x) ... conditions c1 sin(λ1 /4 ) + c2 sinh(λ1 /4 ) = −c1 λ1/2 sin(λ1 /4 ) + c2 λ1/2 sinh(λ1 /4 ) = We see that sin(λ1 /4 ) = The eigenvalues and eigenfunctions are λn = (nπ )4 , φn = sin(nπx), 146 9 n ∈ N Chapter ... r≤ √ Thus the smallest zero of J0 (x) is less than or equal to ≈ 2 .44 94 (The smallest zero of J0 (x) is approximately 2 .40 483 .) (1 Solution 29.9 We assume that < l < π Recall that the solution...
  • 40
  • 94
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 9 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 9 docx
... the answer for ν = 0? Hint, Solution 1 49 9 Exercise 31.12 Find the inverse Laplace transform of ˆ f (s) = s3 − 2s2 +s−2 with the following methods ˆ Expand f (s) using partial fractions and then ... transform to find y(t) We could expand the right side in partial fractions and then use a table of Laplace transforms Since the function is analytic except for 15 29 isolated singularities and vanishes ... Laplace transform of y (s) by first finding its partial fraction expansion ˆ s/3 s/3 s − + +1 s +4 s +1 s/3 4s/3 + =− s +4 s +1 y(t) = − cos(2t) + cos(t) 3 y (s) = ˆ s2 Example 31 .4. 3 Consider...
  • 40
  • 97
  • 0

Xem thêm

Từ khóa: Nghĩa vụ của người quản lý trong Công ty TNHH một thành viênNGHIÊN CỨU BIỂU HIỆN GEN MÃ HÓA KERATINASE TRONG TẾ BÀO ESCHERICHIACOLI VÀ BACILLUS_mergedNGHIÊN CỨU GIỚI Ở VIỆT NAM VÀ ẢNH HƯỞNG CỦA NÓ TỚI CẢI CÁCH LUẬT PHÁP VÀ XÃ HỘINghiên cứu các mô hình đánh giá chất lượng dịch vụ_mergedNghiên cứu chế tạo và các tính chất vật lý của màng mỏng kim loại vàng _Au_ kích thước nanomet bằngNGHIÊN CỨU ĐA DẠNG CÔN TRÙNG NƯỚC Ở MỘT SỐ SUỐI THUỘC LƯU VỰC SÔNG MÃ_ TỈNH THANH HÓANghiên cứu sơ bộ hiện trạng và đề xuất giải pháp bảo tồn các loài thực vật bị đe dọa tuyệt chủng tạiNGHIÊN CỨU TÍNH CHẤT ĐIỆN_ TỪ CỦA MỘT SỐ PEROVSKITE NHIỆT ĐIỆNNGHIÊN CỨU TÍNH CHẤT TỪ CỦA HỢP KIM Fe50Co50 CÓ KÍCH THƯỚC NANO MÉT TỔNG HỢP BẰNG PHƯƠNG PHÁP HỢP KINghiên cứu và đề xuất một mô hình thanh toán điện tửNghiên cứu về trắc nghiệm thích nghiNGHIÊN CỨU XÁC ĐỊNH ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ MÔI TRƯỜNG TỚI QUÁ TRÌNH SINH TỔNG HỢP VÀ HOẠT TÍNHNGHIÊN CỨU XÂY DỰNG BẢN ĐỒ NGUY CƠ TRƯỢT LỞ KHU VỰC XÃ BẢN DÍU_ HUYỆN XÍN MẦN_ TỈNH HÀ GIANG BẰNG PHĐỀ TRẮC NGHIỆM TOÁN LỚP 12 HKII BÀI KT 45PĐổi mới công tác bồi dưỡng năng lực sư phạm cho giáo viên toán trung học cơ sở tỉnh lai châuCong tac tham dinh rui ro tin dungcounterparty credit risk in derivativesBÁO CÁO THỰC HÀNH môn KỸ THUẬT VIỄN THÁM VÀ GISPhân tích tình hình chi phí sản xuất tại công ty TNHH Hưng LongẢNH HƯỞNG CỦA ENSO ĐẾN VIỆT NAM
Đăng ký
Đăng nhập