Bài giảng Giải tích 12 chương 1 bài 4: Đường tiệm cận

bài giảng giải tích 12 chương 1 bài 4 đường tiệm cận

bài giảng giải tích 12 chương 1 bài 4 đường tiệm cận
... tiệm cận ∞ ngang đồ thị ( x →+ ) y = y0 f ( x) x Đường thẳng y=y0 tiệm cận ∞ ngang đồ thị ( x →− ) II Đường tiệm cận đứng: Định nghĩa 2: Đường thẳng x = x0 gọi đường tiệm cận đứng (hay tiệm cận ... I Đường tiệm cận ngang: Định nghĩa 1: Đường thẳng y = y0 gọi đường tiệm cận ngang (hay tiệm cận ngang) đồ thị hàm số y = f(x) xlim y = y xlim y = y →+∞ →−∞ y y0 O y y= y = y0 y = f(x) x y0 O Đường ... →+∞  ( x →−∞ )  =−   Vậy ĐTHS có TCN y = -1/ 5 III Đường tiệm cận xiên: Định nghĩa 3: Đường thẳng y = ax + b gọi đường tiệm cận xiên (hay tiệm cận xiên) đồ thị hàm số y = f(x) lim [ f ( x )...
  • 16
  • 261
  • 0

bài giảng giải tích 12 chương 3 bài 1 nguyên hàm

bài giảng giải tích 12 chương 3 bài 1 nguyên hàm
... g2(x), g3(x) ' cho: g1(x) = g'2(x) = g '3( x) = f(x) Nhận xét: Có vô số hàm số thỏa mãn yêu cầu câu hỏi Các hàm số gọi nguyên hàm hàm số f(x) Chương III: Nguyên hàm tích phân 1 Định nghĩa - Hàm ... Bài toán tìm nguyên hàm hàm số Như vậy: toán đa trị - Mỗi hàm số có họ = F(x) + c ∫ f(x)dx nguyên hàm Với F(x) hàm số f(x) ký hiệu là: - Họ nguyên hàm nguyên hàm f(x), c số f(x)dx ∫ : ∫ Dấu tích ... nguyên hàm f(x) nếu: F’(x) = f(x) 2/ Một hàm số có vô số nguyên hàm (gọi họ nguyên hàm) Mỗi nguyên hàm sai khác số 3/ Họ nguyên hàm f(x), với F(x) nguyên hàm, là: ∫ f (x)dx = F(x) + c Trân trọng...
  • 15
  • 877
  • 0

Xem thêm

Nạp tiền Tải lên
Đăng ký
Đăng nhập